

PIC16C6X

8-Bit CMOS Microcontrollers

Devices included in this data sheet:

- PIC16C61
- PIC16C62
- PIC16C62A
- PIC16CR62
- PIC16C63
- PIC16C64
- PIC16C64A
- PIC16CR64
- PIC16C65
- PIC16C65A

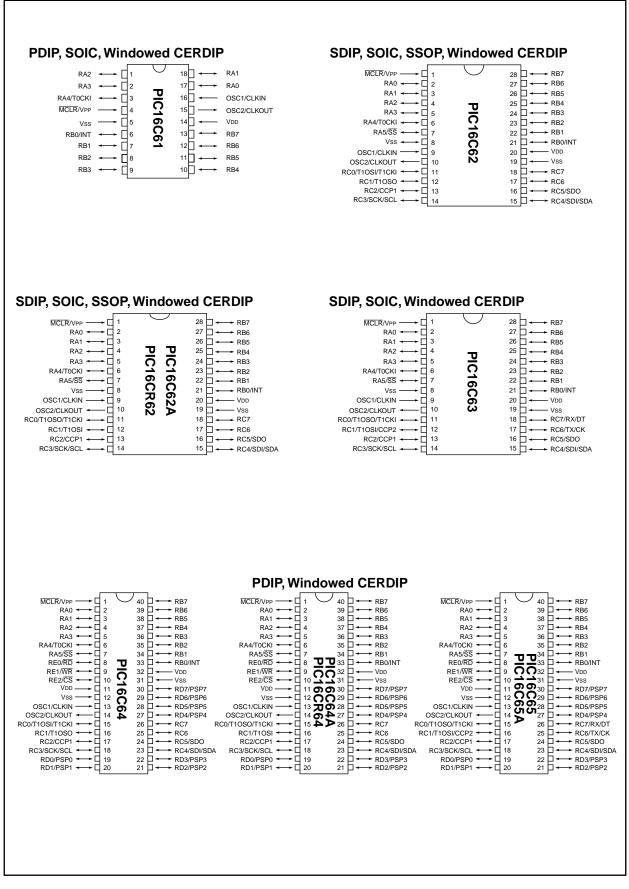
PIC16C6X Microcontroller Core Features:

- · High performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions (200 ns) except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Interrupt capability
- Eight level deep hardware stack
- · Direct, indirect, and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code-protection
- Power saving SLEEP mode

- Selectable oscillator options
- Low-power, high-speed CMOS EPROM/ROM technology
- · Fully static design
- Wide operating voltage range: 2.5V to 6.0V
- Commercial, Industrial, and Automotive Temperature Range
- Low-power consumption:
 - < 2 mA @ 5V, 4 MHz
 - 15 μA typical @ 3V, 32 kHz
 - < 1 μA typical standby current

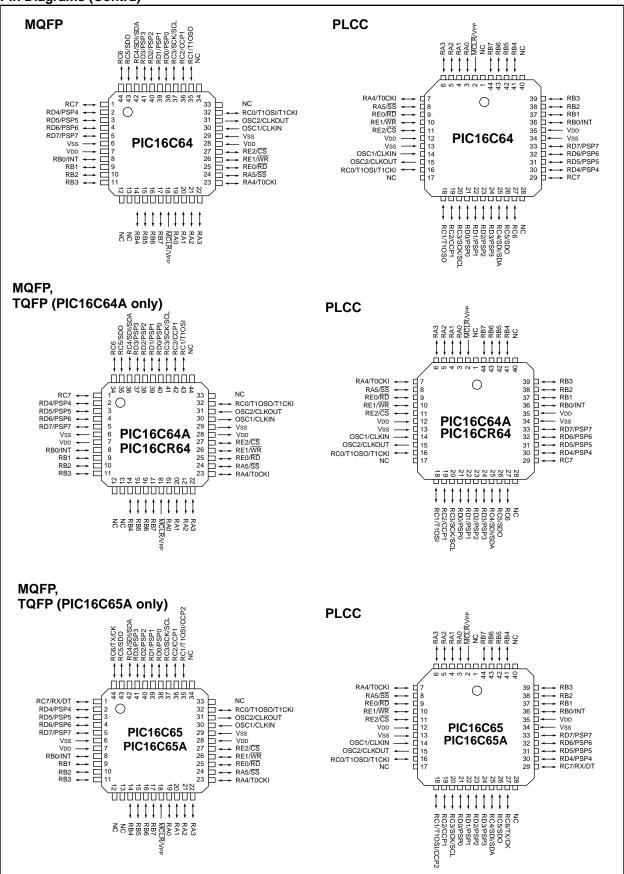
PIC16C6X Peripheral Features:

- Timer0: 8-bit timer/counter with prescaler
- Timer1: 16-bit timer/counter with prescaler. TMR1 can be incremented during sleep via external crystal/clock
- Timer2: 8-bit timer/counter with period register, prescaler and postscaler
- Capture/Compare/PWM module(s)
- Capture is 16-bit, max resolution 12.5 ns, compare is 16-bit, max resolution 200 ns, max. PWM resolution is 10-bit.
- Synchronous Serial Port (SSP) with SPI and I²C[™]
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls
- Brown-out detection circuitry for Brown-out Reset (BOR)


PIC16C6X Features	61	62	62A	R62	63	64	64A	R64	65	65A
Program Memory (EPROM)	1K	2K	2K	_	4K	2K	2K	—	4K	4K
(ROM)	—	_		2K	—	_	—	2K	—	—
Data Memory (Bytes)	36	128	128	128	192	128	128	128	192	192
I/O Pins	13	22	22	22	22	33	33	33	33	33
Parallel Slave Port	—	—			—	Yes	Yes	Yes	Yes	Yes
Capture/Compare/PWM Module	—	1	1	1	2	1	1	1	2	2
Timer Modules	1	3	3	3	3	3	3	3	3	3
Serial Communication	_	SPI/ I ² C	SPI/ I ² C	SPI/ I ² C	SPI/I ² C, USART	SPI/ I ² C	SPI/ I ² C	SPI/ I ² C	SPI/I ² C, USART	SPI/I ² C, USART
In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Brown-out Reset	—	—	Yes	Yes	Yes	_	Yes	Yes	—	Yes
Interrupt Sources	3	7	7	7	10	8	8	8	11	11
Sink/Source Current (mA)	25/20	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25	25/25

I²C is a trademark of Philips Corporation

SPI is a trademark of Motorola Corporation.


© 1996 Microchip Technology Inc.

Pin Diagrams

PIC16C6X

Pin Diagrams (Cont.'d)

TABLE OF CONTENTS

1.0	General Description	5
2.0	PIC16C6X Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	19
5.0	I/O Ports	47
6.0	Overview of Timer Modules	
7.0	Timer0 Module	61
8.0	Timer1 Module	67
9.0	Timer2 Module	71
10.0	Capture/Compare/PWM (CCP) Module(s)	
11.0	Synchronous Serial Port (SSP) Module	
12.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	
13.0	Special Features of the CPU	
14.0	Instruction Set Summary	
15.0	Development Support	
16.0	Electrical Characteristics for PIC16C61	
17.0	DC and AC Characteristics Graphs and Tables for PIC16C61	
18.0	Electrical Characteristics for PIC16C62/64	
19.0	DC and AC Characteristics Graphs and Tables for PIC16C62/64	
20.0	Electrical Characteristics for PIC16C62A/R62/64A/R64	
21.0	DC and AC Characteristics Graphs and Tables for PIC16C62A/R62/64A/R64	
22.0	Electrical Characteristics for PIC16C65	
23.0	DC and AC Characteristics Graphs and Tables for PIC16C65	
24.0	Electrical Characteristics for PIC16C63/65A	
25.0	DC and AC Characteristics Graphs and Tables for PIC16C63/65A	
26.0	Packaging Information	
	Index	
	List of Examples	
	List of Figures	
	List of Tables	
	Connecting to Microchip BBS	
	Reader Response	

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC16C62A, PIC16CR62, PIC16C63, PIC16C64A, PIC16CR64, and PIC16C65A are described in this section.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

1.0 GENERAL DESCRIPTION

The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C61** device has 36 bytes of RAM and 13 I/O pins. In addition a timer/counter is available.

The **PIC16C62/62A/R62** devices have 128 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPITM) or the two-wire Inter-Integrated Circuit (I^2 C) bus.

The **PIC16C63** device has 192 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also know as a Serial Communications Interface or SCI.

The **PIC16C64/64A/R64** devices have 128 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. An 8-bit Parallel Slave Port is also provided.

The **PIC16C65/65A** devices have 192 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is also provided. The PIC16C6X device family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers a power saving mode. The user can wake the chip from SLEEP through several external and internal interrupts, and reset(s).

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control to low-power remote sensors, keyboards and telecom processors. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use, and I/O flexibility make the PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions, and co-processor applications).

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to PIC16CXX family of devices (Appendix B).

1.2 Development Support

The PIC16CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low-cost development programmer, and a full-featured programmer. A "C" compiler and fuzzy logic support tools are also available.

^{© 1996} Microchip Technology Inc.

						Memory	ory		La La	^{>} eripherals	erals			Features
				Vile to B	KOULAN URBOLD	$ \setminus \mathbf{N}$	Solution 150 150 150 150 150 150 150 150 150 150	the second	1100 July	The second		\mathbf{N}	(SHO)	CULUL COLO
	No.	L'ELE ALLE	EL AND CHI	10	Top Tout	- sinoon	Contract St. 0000000000000000000000000000000000	Sillo a			estar e cources estar e cource	SUR SUR		A BERTOR A LINO LUNO LUNO LUNO LUNO LUNO LUNO LUNO LU
PIC16C61	20	ź		36					т	13	3.0-6.0	Yes		18-pin DIP, SOIC
PIC16C62	20	2K	1	128	TMRO, TMR1, TMR2	-	SPI/I ² C	I	~	22	3.0-6.0	Yes	I	28-pin SDIP, SOIC, SSOP
PIC16C62A ⁽¹⁾	20	2K	1	128	TMRO, TMR1, TMR2	-	SPI/I ² C	I	~	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16CR62 ⁽¹⁾	20	I	2K	128	TMRO, TMR1, TMR2	-	SPI/I ² C	I	~	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C63 ⁽¹⁾	20	4K	Ι	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART		10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C64	20	2K	Ι	128	TMRO, TMR1, TMR2	-	SPI/I ² C	Yes	ø	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C64A ⁽¹⁾	20	2K	Ι	128	TMRO, TMR1, TMR2	-	SPI/I ² C	Yes	ø	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR64 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	٢	SPI/I ² C	Yes	8	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65	20	4K	Ι	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	11	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65A ⁽¹⁾	20	4K	Ι	192	TMRO, TMR1, TMR2	2	SPI/I ² C, USART	Yes	11	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
	C16/17	famih	, devio	ved set	a Power-on Rec	et o		Match	Ϊ υυγ	o Tom	o electable		-otort	All DIC18/17 family devices have Dower-on Reset selectable Watchdor Timer selectable code protect and high I/O current canability

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

PIC16C6X

All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect, and high I/O current capability. All PIC16CXX family devices use serial programming with clock pin RB6 and data pin RB7. Please contact your local sales office for availability of these devices.

Note 1:

2.0 PIC16C6X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C6X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC16C64. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**64. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PICSTART[®] and PRO MATETM programmers both support the PIC16C6X. Third party programmers also are available; refer to the *Microchip Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

ROM devices do not allow serialization information in the program memory space. The user may have this information programmed in the data memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

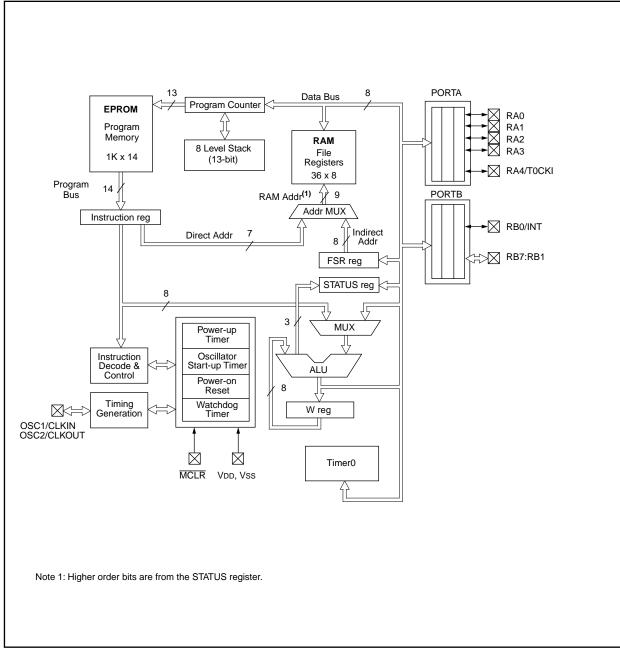
For information on submitting ROM code, please contact your regional sales office. NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data may be fetched from the same memory using the same bus. Separating program and data busses further allows instructions to be sized differently than 8-bit wide data words. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C61 addresses 1K x 14 of program memory. The PIC16C62/62A/R62/64/64A/R64 addresses 2K x 14 of program memory, and the PIC16C63/65/65A devices address 4K x 14 of program memory. All program memory is internal.

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of "special optimal situations" makes programming with the PIC16CXX simple yet efficient, thus significantly reducing the learning curve. The PIC16CXX device contains an 8-bit ALU and working register (W). The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.


The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending upon the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. Bits C and DC operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

PIC16C6X

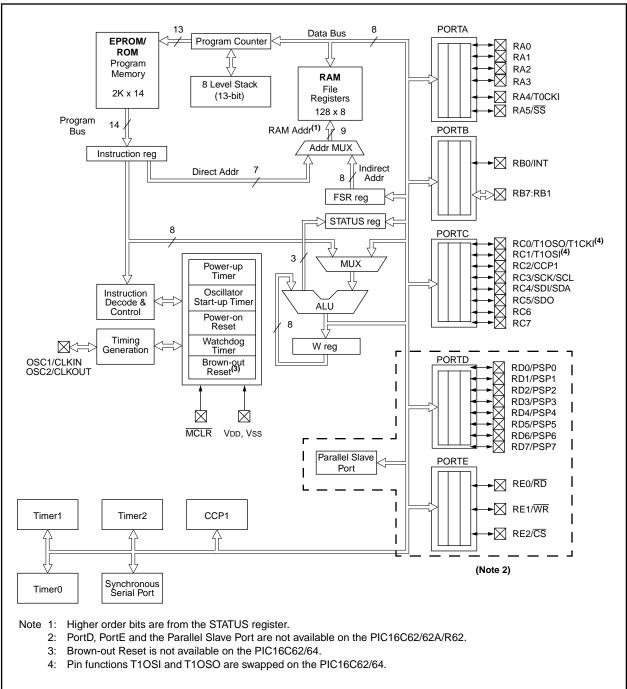
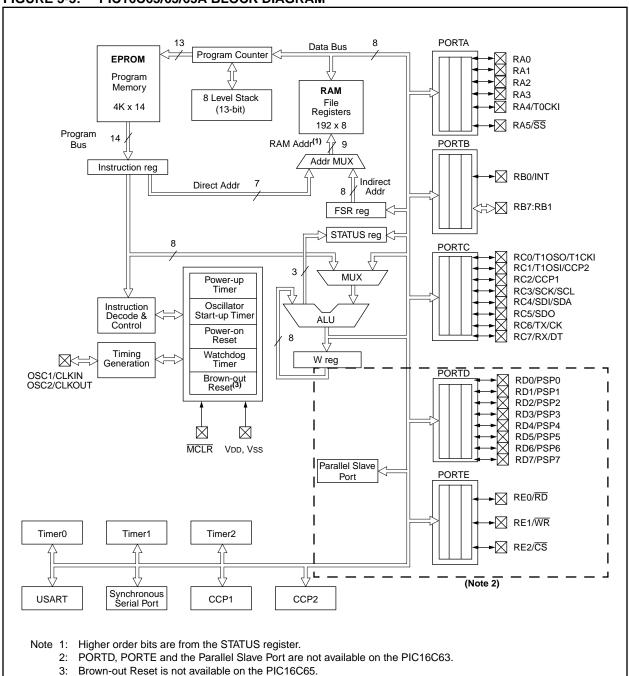



FIGURE 3-2: PIC16C62/62A/R62/64/64A/R64 BLOCK DIAGRAM

PIC16C6X

FIGURE 3-3: PIC16C63/65/65A BLOCK DIAGRAM

Pin Name	DIP Pin#	SOIC Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	16	16	I	ST/CMOS ⁽¹⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	4	4	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0	17	17	I/O	TTL	
RA1	18	18	I/O	TTL	
RA2	1	1	I/O	TTL	
RA3	2	2	I/O	TTL	
RA4/T0CKI	3	3	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	6	I/O	TTL/ST ⁽²⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	7	7	I/O	TTL	
RB2	8	8	I/O	TTL	
RB3	9	9	I/O	TTL	
RB4	10	10	I/O	TTL	Interrupt on change pin.
RB5	11	11	I/O	TTL	Interrupt on change pin.
RB6	12	12	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming clock.
RB7	13	13	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming data.
Vss	5	5	Р	_	Ground reference for logic and I/O pins.
Vdd	14	14	Р	—	Positive supply for logic and I/O pins.
Legend: I = input	0 = oi	utput	l/C) = input/outpu	ut P = power
	— = N	lot used	TT	L = TTL input	ST = Schmitt Trigger input

TABLE 3-1: PIC16C61 PINOUT DESCRIPTION
--

3: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-2: PIC16C62/62A/R62/63 PINOUT DESCRIPTION

Pin Name	DIP, SSOP Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crys- tal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
				PORTA is a bi-directional I/O port.
RA0	2	I/O	TTL	
RA1	3	I/O	TTL	
RA2	4	I/O	TTL	
RA3	5	I/O	TTL	
RA4/T0CKI	6	I/O	ST	Can also be selected to be the clock input to the Timer
DAG/00	_	1/0		timer/counter. Output is open drain type.
RA5/SS	7	I/O	TTL	Slave select for the synchronous serial port.
				PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	21	I/O	TTL/ST ⁽⁴⁾	RB0/INT can also be selected as an external interrupt pin.
RB1	22	1/O	TTL	
RB2	23	1/O	TTL	
RB3	24	1/O	TTL	
RB4	25	1/O	TTL	Interrupt on change pin.
RB5	26	1/O	TTL	Interrupt on change pin.
RB6	27	1/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming clock.
RB7	28	1/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming data.
	20	1/0	112/0107	PORTC is a bi-directional I/O port.
RC0/T1OSO ⁽¹⁾ /T1CKI	11	I/O	ST	RC0/T1OSO/T1CKI can also be selected as a Timer1 oscil- lator output ⁽¹⁾ /Timer1 clock input.
RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	12	I/O	ST	RC1/T1OSI can also be selected as a Timer1 oscillato input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾
RC2/CCP1	13	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	I/O	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SP mode) or data I/O (I ² C mode).
RC5/SDO	16	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SP mode).
RC6/TX/CK ⁽²⁾	17	I/O	ST	RC6/TX/CK can also be selected as Asynchronous Trans mit ⁽²⁾ or USART Synchronous Clock ⁽²⁾ .
RC7/RX/DT ⁽²⁾	18	I/O	ST	RC7/RX/DT can also be selected as the Asynchronous Receive ⁽²⁾ or USART Synchronous Data ⁽²⁾ .
Vss	8,19	Р		Ground reference for logic and I/O pins.
Vdd	20	Р		Positive supply for logic and I/O pins.
Legend: I = input O =	output	/	O = input/outpu	t P = power

— = Not used TTL = TTL input Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C62.

2: The USART and CCP2 are not available on the PIC16C62/62A/R62.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: This buffer is a Schmitt Trigger input when configured as the external interrupt.

5: This buffer is a Schmitt Trigger input when used in serial programming mode.

OSC1/CLKIN OSC2/CLKOUT MCLR/VPP	13 14 1	14 15	30 31	 0	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
		15	31	0		
MCLR/Vpp	1			0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
		2	18	I/P	ST	Master clear reset input/programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0	2	3	19	I/O	TTL	
RA1	3	4	20	I/O	TTL	
RA2	4	5	21	I/O	TTL	
RA3	5	6	22	I/O	TTL	
RA4/T0CKI	6	7	23	I/O	ST	Can also be selected to be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/SS	7	8	24	I/O	TTL	Slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be soft- ware programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽⁴⁾	RB0/INT can also be selected as an external inter- rupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3	36	39	11	I/O	TTL	
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming data.
						PORTC is a bi-directional I/O port.
RC0/T1OSO ⁽¹⁾ /T1CKI	15	16	32	I/O	ST	RC0/T1OSO/T1CKI can also be selected as a Timer1 oscillator output ⁽¹⁾ /Timer1 clock input.
RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	16	18	35	I/O	ST	RC1/T1OSI/CCP2 can also be selected as a Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 out- put/PWM2 output ⁽²⁾ .
RC2/CCP1	17	19	36	I/O	ST	RC2/CCP1 can also be selected as a Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3/SCK/SCL can also be selected as the synchro- nous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	24	26	43	I/O	ST	RC5/SDO can also be selected as the SPI Data Out (SPI mode).
RC6/TX/CK ⁽²⁾	25	27	44	I/O	ST	RC6/TX/CK can also be selected as Asynchronous Transmit ⁽²⁾ or USART Synchronous Clock ⁽²⁾ .
RC7/RX/DT ⁽²⁾	26	29	1	I/O	ST	RC7/RX/DT can also be selected as the Asynchro- nous Receive ⁽²⁾ or USART Synchronous Data ⁽²⁾ .
Legend: I = input O =	= outpu	t	I/O	= input/c	butput F	P = power

Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64. 2: CCP2 and the USART are not available on the PIC16C64/64A/R64.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: This buffer is a Schmitt Trigger input when configured as the external interrupt.

5: This buffer is a Schmitt Trigger input when used in serial programming mode.

6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

Pin Name	DIP Pin#	PLCC Pin#	MQFP Pin#	Pin Type	Buffer Type	Description
						PORTD can be a bi-directional I/O port or parallel slave
						port for interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽⁶⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽⁶⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽⁶⁾	
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽⁶⁾	
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽⁶⁾	
RD5/PSP5	28	31	3	I/O	ST/TTL ⁽⁶⁾	
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽⁶⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽⁶⁾	
						PORTE is a bi-directional I/O port.
RE0/RD	8	9	25	I/O	ST/TTL ⁽⁶⁾	RE0/RD read control for parallel slave port.
RE1/WR	9	10	26	I/O	ST/TTL ⁽⁶⁾	RE1/WR write control for parallel slave port.
RE2/CS	10	11	27	I/O	ST/TTL ⁽⁶⁾	RE2/CS select control for parallel slave port.
Vss	12,31	13,34	6,29	Р		Ground reference for logic and I/O pins.
Vdd	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC		1,17,	12,13,	_	_	These pins are not internally connected. These pins
		28,40	33,34			should be left unconnected.
Legend: I = input	O = outpu	t	I/O	= input/c	output	P = power
	— = Not u	ised	TT	L = TTL ii	nput	ST = Schmitt Trigger input

TABLE 3-3: PIC16C64/64A/R64/65/65A PINOUT DESCRIPTION (Cont.'d)

Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64.

2: CCP2 and the USART are not available on the PIC16C64/64A/R64.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

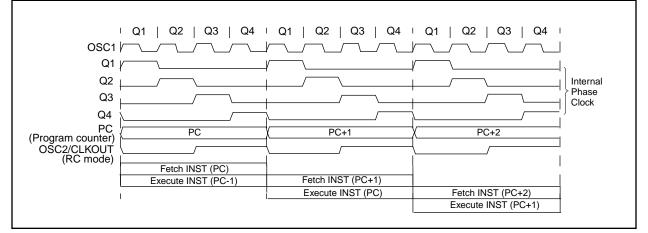
4: This buffer is a Schmitt Trigger input when configured as the external interrupt.

5: This buffer is a Schmitt Trigger input when used in serial programming mode.

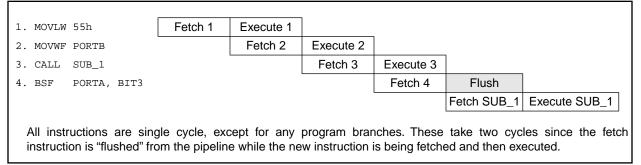
6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-4.


3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

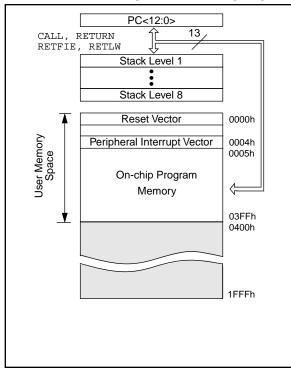
FIGURE 3-4: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

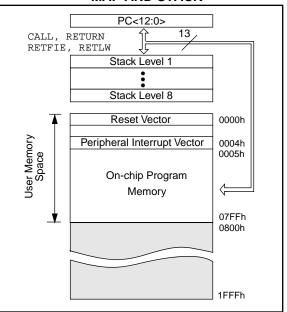
NOTES:

4.0 **MEMORY ORGANIZATION**

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


4.1 **Program Memory Organization**

The PIC16C6X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space.


For the PIC16C61, only the first 1K x 14 (0000h-03FFh) is physically implemented. For the PIC16C62/62A/ R62/64/64A/R64, only the first 2K x 14 (0000h-07FFh) are physically implemented, and for the PIC16C63/65/ 65A, only the first 4K x 14 (0000h-0FFFh) are physically implemented. Accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

PIC16C61 PROGRAM FIGURE 4-1: MEMORY MAP AND STACK

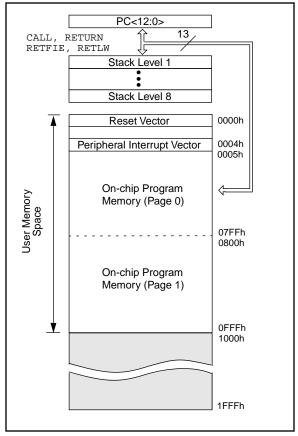


FIGURE 4-2: PIC16C62/62A/R62/64/64A/ **R64 PROGRAM MEMORY MAP AND STACK**

FIGURE 4-3: PIC16C63/65/65A PROGRAM

MEMORY MAP AND STACK

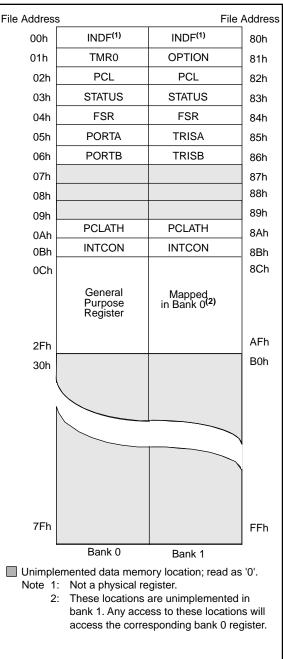
4.2 Data Memory Organization

Applicable Devices 61 62 62 A R62 63 64 64 A R64 65 65 A

The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow Bank 1$

RP0 (STATUS<5>) = $0 \rightarrow Bank 0$


Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTERS

These registers are accessed either directly or indirectly through the file select register (FSR) (Section 4.5).

The general purpose register locations 8Ch-AFh of Bank 1 on the PIC16C61 are not physically implemented. These locations are mapped into 0Ch-2Fh of Bank 0.

FIGURE 4-4: PIC16C61 REGISTER FILE MAP

FIGURE 4-5: PIC16C62/62A/R62/64/64A/ R64 REGISTER FILE MAP

File Addre			File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h
09h	PORTE ⁽²⁾	TRISE ⁽²⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h			98h
4 5 4			9Fh
1Fh			
20h		General	A0h
		Purpose	
	General Purpose	Register	BFh
	Register		C0h
7Fh			FFh
	Bank 0	Bank 1	
	nplemented data me e 1: Not a physica	•	ead as '0'.
INUL		and PORTE are n	ot available
	on the PIC16	C62/62A/R62.	

FIGURE 4-6: PIC16C63/65/65A REGISTER FILE MAP

	FILE M	AP	
File Addre	ess		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	PORTD ⁽²⁾ PORTE ⁽²⁾	TRISD ⁽²⁾ TRISE ⁽²⁾	88h
09h 0Ah	PCLATH	PCLATH	89h 8Ah
0An 0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	
0Dh	PIR2	PIE2	 8Dh
-	TMR1L	PCON	8Eh
0Eh		PCON	
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h	RCSTA	TXSTA	98h
19h	TXREG	SPBRG	99h
1Ah	RCREG		9Ah
1Bh	CCPR2L		9Bh
1Ch	CCPR2H		9Ch
1Dh	CCP2CON		9Dh
1Eh			9Eh
1Fh			9Fh
20h	General	General	A0h
7Fh	Purpose Register	Purpose Register	FFh
	Bank 0 nplemented data m e 1: Not a physica 2: Pin PORTD a able on the P	al register and PORTE are i	

4.2.2 SPECIAL FUNCTION REGISTERS:

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). The registers associated with the "core" functions are described in this section and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h (1)	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	—	_	_	PORTA Dat	a Latch whe	n written: PC	RTA pins wh	en read	x xxxx	u uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wh	hen read				XXXX XXXX	uuuu uuuu
07h	-	Unimpleme	nted							—	—
08h	—	Unimpleme	nted							—	—
09h	—	Unimpleme	nted							_	
0Ah ^(1,2)	PCLATH	_	_	—	Write Buffer	r for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0							1111 1111	1111 1111	
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte		0000 0000	0000 0000			
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾ RP0 TO PD Z DC C						0001 1xxx	000q quuu	
84h ⁽¹⁾	FSR	Indirect data memory address pointer							xxxx xxxx	uuuu uuuu	
85h	TRISA	_	_	_	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Dat	ta Direction C	Control Regis	ster					1111 1111	1111 1111
87h	-	Unimpleme	nted							—	—
88h	-	Unimpleme	nted							—	—
89h	-	Unimpleme	nted							—	—
8Ah ^(1,2)	PCLATH	_	—	—	Write Buffer	r for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	—	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u
	1	-								1	

TABLE 4-1:SPECIAL FUNCTION REGISTERS FOR THE PIC16C61

 $\label{eq:logarder} \begin{array}{ll} \mbox{Legend:} & x = \mbox{unknown}, \mbox{u} = \mbox{unchanged}, \mbox{q} = \mbox{value depends on condition, $-$ = unimplemented locations read as '0'.} \\ & \mbox{Shaded locations are unimplemented and read as '0'} \end{array}$

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 0									•		
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h (1)	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h (1)	FSR	Indirect data	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	—	PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wh	nen read				XXXX XXXX	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	xxxx xxxx	uuuu uuuu						
08h	_	Unimpleme	nted	—	_						
09h	_	Unimpleme	nted	—							
0Ah (1,2)	PCLATH	—	—	0 0000	0 0000						
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(6)	(6)	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	_	Unimpleme	nted							—	_
0Eh	TMR1L	Holding reg	ister for the L	east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the N	Aost Signific	ant Byte of th	e 16-bit TMF	R1 register			XXXX XXXX	uuuu uuuu
10h	T1CON	-	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	iffer/Transmit	Register				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	-	Unimpleme	nted							_	_

 TABLE 4-2:
 SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sig	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	с	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	Idress pointe	ər	•				xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Dat	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction F	Register						1111 1111	1111 1111
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	—
8Ah ^(1,2)	PCLATH	_	-	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	(6)	(6)	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							_	—
8Eh	PCON	_	_	—	-	—	—	POR	BOR ⁽⁴⁾	dd	uu
8Fh	_	Unimpleme	nted							_	—
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Port	t (I ² C mode)	Address Re	gister				0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	_	Unimpleme	nted							_	—

TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conte	nts of FSR to	address data	a memory (n	ot a physical	l register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						XXXX XXXX	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect dat	a memory ac	dress point	er		1	1	1	xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Da	ta Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Da	ta Latch whe	n written: P	ORTB pins wl	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	en written: P	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	_	Unimpleme	ented							_	_
09h	_	Unimpleme	ented							_	_
0Ah (1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(5)	(5)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	PIR2	_	_	—		_	—	—	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the I	_east Signifi	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	jister for the I	Most Signific	cant Byte of th	ne 16-bit TMI	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Por	t Receive Bu	uffer/Transmit	Register				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Data R	legister						0000 0000	0000 0000
1Ah	RCREG	USART Re	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted							_	_

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

5: PIE1<7:6> and PIR1<7:6> are reserved, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 1		1				1					
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sig	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	—	PORTA Dat	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	_	Unimpleme	nted							_	—
89h	—	Unimpleme	nted							_	—
8Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	(5)	(5)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	—	_	_	_	_	_	CCP2IE	0	0
8Eh	PCON	_	—	_	_	_	_	POR	BOR	dd	uu
8Fh	_	Unimpleme	nted					•		_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	_	_	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	—	Unimpleme	nted							—	—
96h	—	Unimpleme	nted							_	—
97h	—	Unimpleme	nted				_	_	_	—	—
98h ⁽²⁾	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h ⁽²⁾	SPBRG	Baud Rate	Generator R	egister						0000 0000	0000 0000
9Ah	_	Unimpleme	nted							_	_
9Bh	_	Unimpleme	nted							_	_
9Ch	_	Unimpleme	nted							_	—
9Dh	—	Unimpleme	nted							_	—
9Eh	_	Unimpleme	nted							_	_
9Fh	—	Unimpleme	nted							_	_

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

5: PIE1<7:6> and PIR1<7:6> are reserved, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 0				•							
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						XXXX XXXX	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	er	1	I		1	xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wh	nen read				XXXX XXXX	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins wl	nen read				xxxx xxxx	uuuu uuuu
08h	PORTD	PORTD Da	ta Latch whe		xxxx xxxx	uuuu uuuu					
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah (1,2)	PCLATH	_	_	0 0000	0 0000						
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	—	Unimpleme	nted				<u> </u>			—	_
0Eh	TMR1L	Holding reg	ister for the L	east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the N	Aost Signific	ant Byte of th	e 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	iffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	_	Unimplemented								_	_

 TABLE 4-4:
 SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	с	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	—	PORTA Dat	a Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	TRISD	PORTD Da	ta Direction I	Register						1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
8Ah (1,2)	PCLATH	_	—		Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE	(6)	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	_	—	-	-	—	—	POR	BOR ⁽⁴⁾	dd	uu
8Fh	_	Unimpleme	nted							_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	lister				0000 0000	0000 0000
94h	SSPSTAT	—	—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	_	Unimpleme	implemented							_	_

TABLE 4-4:SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 0	•						•			•	•
00h (1)	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physica	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						XXXX XXXX	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
_{04h} (1)	FSR	Indirect dat	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins w	hen read				XXXX XXXX	uuuu uuuu
08h	PORTD	PORTD Da	ta Latch whe	n written: PC	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	_	_	_		_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the l	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Por	t Receive Bu	Iffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON		—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Data R	egister						0000 0000	0000 0000
1Ah	RCREG	USART Re	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted		1	1				_	

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conte	nts of FSR to	address dat	a memory (n	ot a physica	l register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sig	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	с	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat	a memory ac	dress point	er			,		xxxx xxxx	uuuu uuuu
85h	TRISA	_	—	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	TRISD	PORTD Da	ta Direction F	Register						1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
8Ah (1,2)	PCLATH	_	—		Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE	(6)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	—		_	_	_	_	CCP2IE	0	0
8Eh	PCON	_	_	_	_	_	_	POR	BOR ⁽⁴⁾	dd	uu
8Fh	_	Unimpleme	nted						•	_	_
90h	_	Unimpleme	nted							-	_
91h	—	Unimpleme	nted							_	—
92h	PR2	Timer2 Peri	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	lister				0000 0000	0000 0000
94h	SSPSTAT	_	—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h	—	Unimpleme	nted							—	—
96h	_	Unimpleme	nted							—	—
97h	_	Unimpleme	nted							_	_
98h	TXSTA	CSRC	ТХ9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generator R	egister						0000 0000	0000 0000
9Ah	—	Unimpleme	nted							—	—
9Bh	—	Unimpleme	nted							—	—
9Ch	—	Unimpleme	nted							—	_
9Dh	—	Unimpleme	nted							-	_
9Eh	—	Unimpleme	nted							-	_
9Fh	—	Unimpleme	nted							-	-

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C6X, always maintain these bits clear.

4.2.2.1 STATUS REGISTER

Applicable Devices 61 62 62 63 64 64 864 65 65 64

The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16C6X and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

<u>R/W-0</u> IRP	<u>R/W-0</u> RP1	R/W-0 RP0	<u>R-1</u> TO	<u>R-1</u> PD	R/W-x Z	R/W-x DC	R/W-x C	R = Readable bit
bit7			10				bit0	
bit 7:	IRP : Regist 1 = Bank 2, 0 = Bank 0, The IRP bit	, 3 (100h - 1 , 1 (00h - F	1FFh) Fh)				lways main	tain this bit clear.
bit 6-5:	RP1:RP0: F 11 = Bank 2 10 = Bank 2 01 = Bank 2 00 = Bank 0 Each bank Only bit RP	3 (180h - 1 2 (100h - 1 1 (80h - FF 0 (00h - 7F is 128 byte	FFh) 7Fh) h) s.	,			ays mainta	in this bit clear.
bit 4:	$\overline{\mathbf{TO}}$: Time-o 1 = After po 0 = A WDT	ower-up, CL		uction, or s	LEEP instru	ction		
bit 3:	PD : Power- 1 = After po 0 = By exect	ower-up or			tion			
bit 2:	Z : Zero bit 1 = The res $0 = The res$			0 1		ero		
bit 1:	0	-out from th	ne 4th low c	rder bit of	the result oc		nstructions) (For $\overline{\text{borrow}}$ the polarity is reversed)
bit 0:	1 = A carry 0 = No carr Note: a sub	-out from the y-out from otraction is e	ne most sig the most si executed by	nificant bit gnificant bi / adding th	of the result t of the resu e two's com	occurred It plement of tl	he second o	borrow the polarity is reversed). operand. low order bit of the source register.

FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)

4.2.2.2 OPTION REGISTER

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB. Note: To achieve a 1:1 prescaler assignment for TMR0 register, assign the prescaler to the Watchdog Timer by setting the PSA (OPTION<3>) bit.

FIGURE 4-8: OPTION REGISTER (ADDRESS 81h)

R/W-1 RBPU	R/W-1	R/W-1 T0CS	R/W-1 T0SE	R/W-1 PSA	R/W-1 PS2	R/W-1 PS1	R/W-1 PS0	R = Readable bit
it7	INTEDG	1003	1035	FSA	F 52	F31	pit0	W = Writable bit
117							DILU	U = Unimplemented bit,
								read as '0'
								- n = Value at POR reset
oit 7:	RBPU: POF							
	1 = PORTB							
	0 = PORTB	pull-ups ar	e enabled	by individua	al port latch	values		
oit 6:	INTEDG: In	terrupt Edg	e Select bi	it				
	1 = Interrup							
	0 = Interrup	t on falling of	edge of RE	30/INT pin				
oit 5:	TOCS: TMR	0 Clock So	urce Selec	t bit				
	1 = Transitio		•					
	0 = Internal	instruction	cycle cloc	k (CLKOUT)			
bit 4:	TOSE: TMR	0 Source E	dge Selec	t bit				
		0			A4/T0CKI pii			
	0 = Increme	ent on low-to	o-high tran	sition on R/	A4/T0CKI pii	า		
bit 3:	PSA: Presc	aler Assign	ment bit					
	1 = Prescal	0						
	0 = Prescal	er is assign	ed to the T	imer0 mod	ule			
bit 2-0:	PS2:PS0 : P	rescaler Ra	ate Select	bits				
	Bit Value	TMR0 Ra	ate WD1	Rate				
	000	1:2	1:	1				
	001	1:4	1:	2				
	010	1:8	1:	4				
	011	1:16	1:	-				
	100	1:32		16				
	101	1:64		32				
	110 111	1:128		64 128				
	<u> </u>	1.200	ין כ	120				

4.2.2.3 INTCON REGISTER

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-9: INTCON REGISTER FOR PIC16C61 (ADDRESS 0Bh, 8Bh)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE bit7	—	T0IE	INTE	RBIE	TOIF	INTF	RBIF bit0	R = Readable bit W = Writable bit
								U = Unimplemented bit, read as '0'
								- n = Value at POR reset
h:+ 7.)				x = unknown
bit 7:	GIE: Globa 1 = Enable 0 = Disable	s all un-ma	sked interr					
bit 6:	Unimplem	ented: Rea	ad as '0'					
bit 5:	TolE: TMR 1 = Enable 0 = Disable	s the TMR) overflow i	nterrupt				
bit 4:	INTE: RB0 1 = Enable 0 = Disable	s the RB0/I	NT externa	•				
bit 3:	RBIE: RB I 1 = Enable 0 = Disable	s the RB po	ort change	interrupt				
bit 2:	TOIF: TMR 1 = TMR0 0 = TMR0	register ove	erflowed (m	ust be clear	ed in softwa	re)		
bit 1:		30/INT exte	rnal interru	0	(must be cle	ared in soft	ware)	
bit 0:		t one of the	RB7:RB4	0	· ·	Section 5.2	to clear inte	errupt)
Note 1:		•			•			onally be re-enabled by the RETFIE ailed description.

FIGURE 4-10: INTCON REGISTER FOR PIC16C62/62A/R62/63/64/64A/R64/65/65A (ADDRESS 0Bh, 8Bh)

R/W-0 GIE	R/W-0 PEIE	R/W-0 T0IE	R/W-0 INTE	R/W-0 RBIE	R/W-0 T0IF	R/W-0	R/W-x RBIF	R = Readable bit
bit7		TOLE		KBIE	TOIF		bit0	 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	1 = Enable	al Interrupt E s all un-ma es all interru	sked interr					x = unknown
bit 6:	1 = Enable	pheral Inter s all un-ma s all periph	sked peripl	neral interru	pts			
bit 5:	1 = Enable	0 Overflow s the TMR0 es the TMR0	overflow i	nterrupt				
bit 4:	1 = Enable	/INT Extern s the RB0/I s the RB0/	NT externa	l interrupt				
bit 3:	1 = Enable	Port Changes the RB port RB port Port Port Port Port Port Port Port P	ort change	interrupt				
bit 2:	1 = TMR0	0 Overflow register ove register did	rflowed (m	ust be clear	ed in softwa	re)		
bit 1:	1 = The RE	/INT Extern 30/INT exter 30/INT exter	nal interru	pt occurred	(must be cle	eared in soft	ware)	
bit 0:	1 = At leas	Port Change t one of the of the RB7:F	RB7:RB4	pins change	•	e Section 5.2	2 to clear the	interrupt)
Note 1:		led by the F						red, the GIE bit may unintentionally Refer to Section 13.5 for a detailed

4.2.2.4 PIE1 REGISTER

 Applicable Devices

 61
 62
 62
 63
 64
 64
 R64
 65
 65A

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 4-11: PIE1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 8Ch)

RW-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—		—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit		
bit 7 ci	Deserved		intoin theor	hite close			bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 		
bit 7-6:	Reserved: Always maintain these bits clear.									
bit 5-4:	Unimplemented: Read as '0'									
bit 3:	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt									
bit 2:	CCP1IE : CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt									
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt									
bit 0:	TMR1IE : TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt									

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

FIGURE 4-12: PIE1 REGISTER FOR PIC16C63 (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	_	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit			
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 			
bit 7-6:	Reserved: Always maintain these bits clear.										
bit 5:	RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt										
bit 4:	TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt										
bit 3:	SSPIE : Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt										
bit 2:	CCP1IE : CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt										
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt										
bit 0:	TMR1IE : TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt										

FIGURE 4-13: PIE1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 8Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
PSPIE	—	_		SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit			
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 			
bit 7:	 PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt 										
bit 6:	Reserved: Always maintain this bit clear.										
bit 5-4:	Unimplemented: Read as '0'										
bit 3:	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt										
bit 2:	CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt										
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt										
bit 0:	TMR1IE : TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt										

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PSPIE		RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit			
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7:	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt										
bit 6:	Reserved:	Reserved: Always maintain this bit clear.									
bit 5:	RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt										
bit 4:	1 = Enable	TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt									
bit 3:	SSPIE : Syr 1 = Enable 0 = Disable	s the SSP i	nterrupt	Interrupt Er	able bit						
bit 2:	CCP1IE : C 1 = Enable 0 = Disable	s the CCP1	interrupt	oit							
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt										
bit 0:	TMR1IE : T 1 = Enable 0 = Disable	s the TMR1	overflow in	nterrupt	t						

FIGURE 4-14: PIE1 REGISTER FOR PIC16C65/65A (ADDRESS 8Ch)

4.2.2.5 PIR1 REGISTER

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

This register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-15: PIR1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
bit7	_	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7-6:	Reserved:	Always ma	intain these	e bits clear.								
bit 5-4:	Unimplem	Unimplemented: Read as '0'										
bit 3:	 SSPIF: Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive 											
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode											
bit 1:	1 = TMR2 t	TMR2IF : TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred										
bit 0:	1 = TMR1 r	0 = No TMR2 to PR2 match occurred TMR1IF : TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) 0 = No TMR1 register overflow occurred										

FIGURE 4-16: PIR1 REGISTER FOR PIC16C63 (ADDRESS 0Ch)

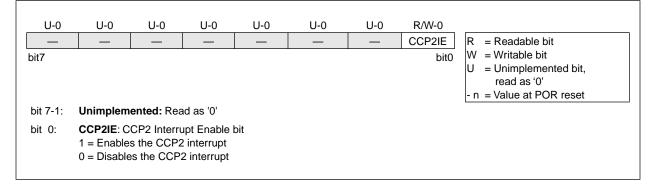
R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
 bit7	_	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7-6:	Reserved: Always maintain these bits clear.											
bit 5:	RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (must be cleared in software) 0 = The USART receive buffer is empty											
bit 4:	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is full (must be cleared in software) 0 = The USART transmit buffer is empty											
bit 3:	 SSPIF: Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive 											
bit 2:	$\frac{Capture Mo}{1 = A TMR}$ $0 = No TMI$ $\frac{Compare M}{1 = A TMR}$ $0 = No TMI$ $\frac{PWM Mode}{1 = A TMR}$	CCP1IF: CCP1 Interrupt Flag bit <u>Capture Mode</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM Mode</u> Unused in this mode										
bit 1:	1 = TMR2 t	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred										
bit 0:	TMR1IF : TI 1 = TMR1 r 0 = No TMF	egister ove	rflow occu	red (must b	be cleared in	software)						

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
PSPIF		—		SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit			
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 			
bit 7:	PSPIF: Par 1 = A read 0 = No read	or a write c	peration ha	s taken pla	ice (Must be ce	cleared in s	software)				
bit 6:	Reserved:	eserved: Always maintain this bit clear.									
bit 5-4:	Unimplem	ented: Rea	d as '0'								
bit 3:	SSPIF : Syr 1 = The tran 0 = Waiting	nsmission/i	eception is	•	ag bit (must k	be cleared in	n software)				
bit 2:	0 = No TMF Compare M	ode 1 register c R1 register <u>1 register c</u> R1 register c 2	apture occi capture oc ompare ma	curred tch occurre	be cleared in ed (must be c red		oftware)				
bit 1:	TMR2IF : TM 1 = TMR2 t 0 = No TMB	o PR2 mat	ch occurred	l (must be o	bit cleared in sol	ftware)					
bit 0:	TMR1IF : TI 1 = TMR1 r 0 = No TMF	egister ove	rflow occur	•	e cleared in	software)					

FIGURE 4-17: PIR1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 0Ch)

FIGURE 4-18: PIR1 REGISTER FOR PIC16C65/65A (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
PSPIF bit7	_	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	U	 Readable bit Writable bit Unimplemented bit, read as '0' Value at POR reset 			
bit 7:	1 = A read	rallel Slave or a write c d or write o	peration h	as taken pla	ice (Must be ce	cleared in s	software)	<u> </u>				
bit 6:	Reserved:	Reserved: Always maintain this bit clear.										
bit 5:	1 = The US	RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (must be cleared in software) 0 = The USART receive buffer is empty										
bit 4:	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is full (must be cleared in software) 0 = The USART transmit buffer is empty											
bit 3:	SSPIF: Synchronous Serial Port Interrupt Flag bit (must be cleared in software) 1 = The transmission/reception is complete 0 = Waiting to transmit/receive											
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred WM Mode Unused in this mode											
bit 1:	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred											
bit 0:	1 = TMR1	MR1 Overfl register ove R1 register	rflow occu	red (must b	e cleared in	software)						

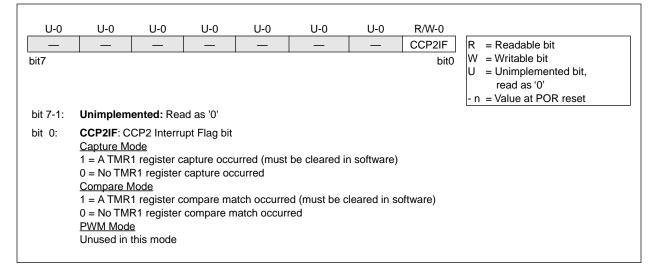

4.2.2.6 PIE2 REGISTER

 Applicable Devices

 61
 62
 62
 63
 64
 64A
 R64
 65
 65A

This register contains the CCP2 interrupt enable bit.

FIGURE 4-19: PIE2 REGISTER (ADDRESS 8Dh)

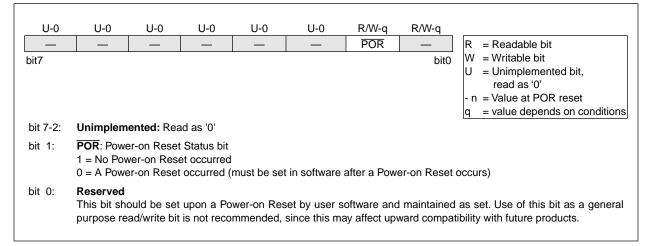


4.2.2.7 PIR2 REGISTER

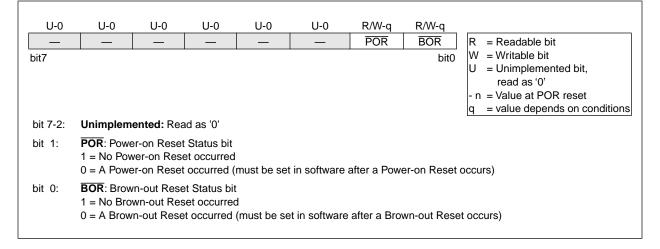
		Applicable Devices								
	61	62	62A	R62	63	64	64A	R64	65	65A
This register contains the CCP2 interrupt flag bit.										

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-20: PIR2 REGISTER (ADDRESS 0Dh)


4.2.2.8 PCON REGISTER

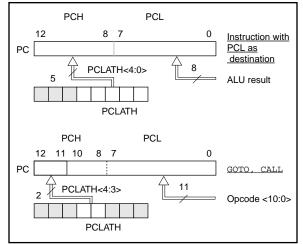
Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


The Power Control register (PCON) contains a flag bit to allow differentiation between a Power-on Reset to an external MCLR reset or WDT reset. The PIC16C62A/R62/63/64A/R64/65A contains an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-21: PCON REGISTER FOR PIC16C62/64/65 (ADDRESS 8Eh)

FIGURE 4-22: PCON REGISTER FOR PIC16C62A/R62/63/64A/R64/65A (ADDRESS 8Eh)



4.3 PCL and PCLATH

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) not directly readable or writable and comes from PCLATH. On any reset, the high byte of the PC is cleared. Figure 4-23 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-23: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or a POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflows or stack underflow conditions.
- Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address
- 4.4 Program Memory Paging Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The PIC16C63/65/65A devices have 4K of program memory, but the CALL and GOTO instructions only have an 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. To allow CALL and GOTO instructions to address the entire 4K program memory address range, there must be another bit to specify the program memory page. This paging bit comes from the PCLATH<3> bit (Figure 4-23). When doing a CALL or GOTO instruction, the user must ensure that this page select bit (PCLATH<3>) is programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the return instructions (which POPs the address from the stack).

Note: The PIC16C6X ignores the PCLATH<4> bit, which is used for program memory pages 2 and 3 (1000h - 1FFFh). The use of PCLATH<4> as a general purpose read/ write bit is not recommended since this may affect upward compatibility with future products. Devices with 2K or less program memory

ignore the PCLATH<3> bit, which is used for program memory page 1 (0800h-0FFFh). The use of PCLATH<3> as a general purpose read/write bit for these devices is not recommended since this may affect upward compatibility with future products. Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that the PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

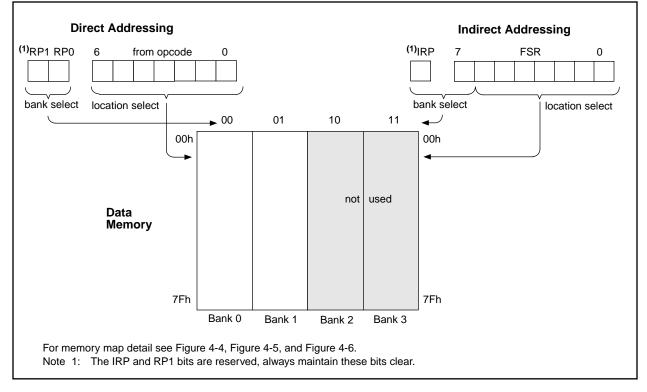
EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	500	
BSF	pclath,3	;Select page 1 (800h-FFFh)
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1 P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN	T	<pre>;return to Call subroutine ;in page 0 (000h-7FFh)</pre>

4.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

Applicable Devices 61 62 62 862 63 64 64 864 65 65 65

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-24. However, IRP is not used in the PIC16C6X.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

FIGURE 4-24: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

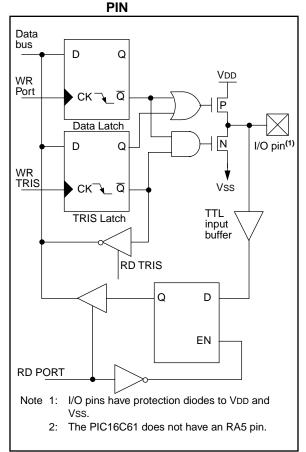
5.1 PORTA and TRISA Register

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

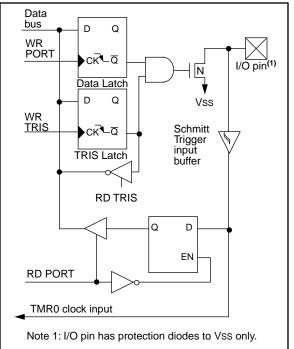
All devices have a 6-bit wide PORTA, except for the PIC16C61 which has a 5-bit wide PORTA.

Pin RA4/T0CKI is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.


Reading PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefor, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with Timer0 module clock input to become the RA4/T0CKI pin.


EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by ; setting output ; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs
		; TRISA<7:6> are always
		; read as '0'.

FIGURE 5-1: BLOCK DIAGRAM OF THE RA3:RA0 PINS AND THE RA5

FIGURE 5-2: BLOCK DIAGRAM OF THE RA4/T0CKI PIN

TABLE 5-1:PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS (1)	bit5	TTL	Input/output, slave select input for synchronous serial port.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C61 does not have PORTA<5> or TRISA<5>, read as '0'.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
05h	PORTA	—	—	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA		_	TRISA5 ⁽¹⁾	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C61, read as '0'.

5.2 PORTB and TRISB Register

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

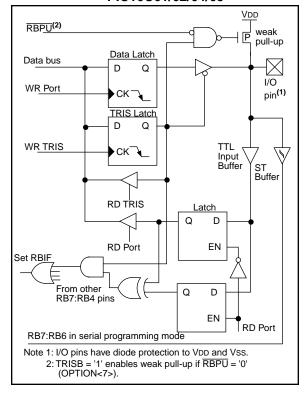
EXAMPLE 5-2: INITIALIZING PORTB

CLRF	PORTB	;	Initialize PORTB by
		;	setting output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

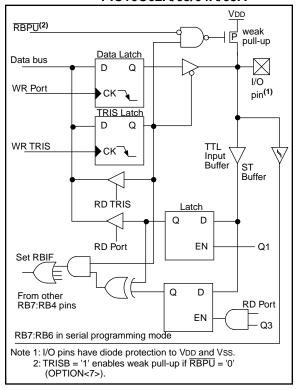
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing bit $\overline{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are also disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB port change interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, Application Note, *"Implementing Wake-up on Key Stroke" (AN552)*.


Note:	For PIC16C61/62/64/65 only,
	if a change on the I/O pin should occur
	when a read operation is being executed
	(start of the Q2 cycle), then interrupt flag bit
	RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-3: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C61/62/64/65

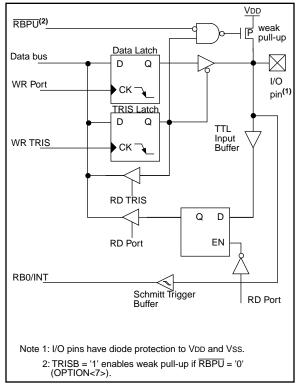


FIGURE 5-4: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C62A/63/64A/65A

PORTR FUNCTIONS

FIGURE 5-5: BLOCK DIAGRAM OF THE RB3:RB0 PINS

TADLE J-J.	FUN	ID I UNCTION	5
Name	Bit#	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

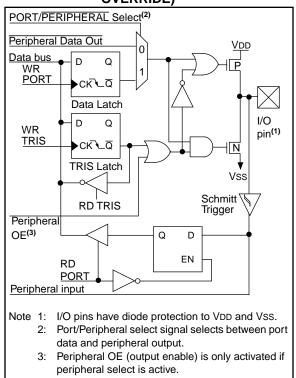
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

TABLE 5-3

5.3 PORTC and TRISC Register

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


PORTC is an 8-bit bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 5-3: INITIALIZING PORTC

CLRF	PORTC	;	Initialize PORTC by
		;	setting output
		;	data latches
BSF	STATUS, RPO	;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISC	;	Set RC<3:0> as inputs
		;	RC<5:4> as outputs
		;	RC<7:6> as inputs

FIGURE 5-6: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

TABLE 5-5:PORTC FUNCTIONS FOR PIC16C62/64

Name	Bit#	Buffer Type	Function
RC0/T1OSI/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator input or Timer1 clock input
RC1/T1OSO	bit1	ST	Input/output port pin or Timer1 oscillator output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I 2 C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger Input

TABLE 5-6:PORTC FUNCTIONS FOR PIC16C62A/R62/64A/R64

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture input/Compare output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger Input

TABLE 5-7: PORTC FUNCTIONS FOR PIC16C63/65/65A

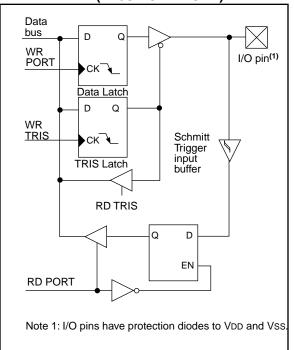
Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin, Timer1 oscillator input, Capture2 input/Compare2 out- put/PWM2 output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3/SCK/SCL can also be selected as the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4/SDI/SDA can also be selected as the SPI Data In (SPI mode) or data I/O (I 2 C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6/TX/CK	bit6	ST	Input/output port pin, USART Asynchronous Transmit, or USART Synchronous Clock
RC7/RX/DT	bit7	ST	Input/output port pin, USART Asynchronous Receive, or USART Synchro- nous Data

Legend: ST = Schmitt Trigger Input

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged.


5.4 PORTD and TRISD Register

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as input or output.

PORTD can be configured as an 8-bit wide microprocessor port (or parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 5-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

TABLE 5-9: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger Input, TTL = TTL input

Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port mode.

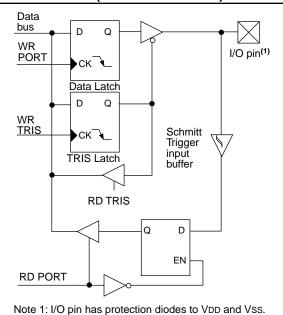
TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

5.5 PORTE and TRISE Register

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


PORTE has three pins, RE2/CS, RE1/WR, and RE0/RD which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which also controls the parallel slave port operation.

TRISE controls the direction of the RE pins.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1					
IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	R = Readable bit				
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 				
bit 7 :	1 = A word	IBF: Input Buffer Full Status bit 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received										
bit 6:	1 = The ou	tput buffer	ull Status bit still holds a pi has been rea		ritten word							
bit 5:	1 = A write	BOV: Input Buffer Overflow Detect bit (in microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred										
bit 4:	PSPMODE 1 = Paralle 0 = Genera	l slave por		de Select t	bit							
bit 3:	Unimplem	ented: Re	ad as '0'									
bit 2:	TRISE2 : Di 1 = Input 0 = Output	TRISE2: Direction Control bit for pin RE2/CS 1 = Input										
bit 1:	TRISE1 : Di 1 = Input 0 = Output	•										
bit 0:	TRISE0 : Di 1 = Input 0 = Output		ontrol bit for pi	n RE0/RD								

TABLE 5-11: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD	bit0	ST/TTL ⁽¹⁾	Input/output port pin, Read control input in parallel slave port mode. RD 1 = Not a read operation 0 = Read operation. The system reads the PORTD register (if chip selected)
RE1/WR	bit1	ST/TTL ⁽¹⁾	Input/output port pin, Write control input in parallel slave port mode. WR 1 = Not a write operation 0 = Write operation. The system writes to the PORTD register (if chip selected)
RE2/CS	bit2	ST/TTL ⁽¹⁾	Input/output port pin, Chip select control input in parallel slave port mode. CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger Input, TTL = TTL input

Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port (PSP) mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
09h	PORTE	_	—	—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells not used by PORTE.

5.6 I/O Programming Considerations

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

5.6.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;					PORT	latch	PORT	pins
;								
	BCF :	PORTB,	7	;	01pp	pppp	11pp	pppp
	BCF :	PORTB,	6	;	10pp	pppp	11pp	pppp
	BSF	STATUS ,	RP0	;				
	BCF '	TRISB,	7	;	10pp	pppp	11pp	pppp
	BCF '	TRISB,	6	;	10pp	pppp	10pp	pppp

;Note that the user may have expected the ;pin values to be 00pp pppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

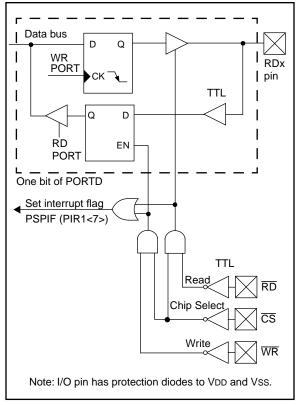
PC	X PC	X PC + 1	X PC + 2 X	PC + 3	This example shows a write to PC		
Instruction fetched	MOVWF PORTB	MOVF PORTB,W	NOP	NOP	followed by a read from PORTB.		
	PORTB	1			Note that:		
RB7:RB0		l I	X		data setup time = (0.25Tcy - TPD)		
		1 1 1 1	Port pin sampled here	, , ,	where Tcy = instruction cycle TPD = propagation delay		
Instruction executed		¦►	TPD -	NOP	Therefore, at higher clock frequen		
		MOVWF PORTB write to PORTB	MOVF PORTB,W	1	a write followed by a read may problematic.		
1		1	1 I	1			

FIGURE 5-10: SUCCESSIVE I/O OPERATION

5.7 Parallel Slave Port

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

PORTD operates as an 8-bit wide parallel slave port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input (RE0/RD) and \overline{WR} control input pin (RE1/WR).


It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored since the microprocessor is controlling the direction of data flow.

Input Buffer Full Status Flag bit IBF (TRISE<7>) is set if a received word is waiting to be read by the CPU. Once the PORTD input latch is read, bit IBF is cleared. IBF is a read only status bit. Output Buffer Full Status Flag bit OBF (TRISE<6>) is set if a word written to PORTD latch is waiting to be read by the external bus. Once the PORTD output latch is read by the microprocessor, bit OBF is cleared. Input Buffer Overflow Status flag bit IBOV (TRISE<5>) is set if a second write to the microprocessor port is attempted when the previous word has not been read by the CPU (the first word is retained in the buffer). When not in Parallel Slave Port mode, bits IBF (TRISE<7>) and OBF (TRISE<6>) are held clear. However if flag bit IBOV (TRISE<5>) was previously set, it must be cleared in software.

An interrupt is generated and latched into flag bit PSPIF (PIR1<7>) when a read or a write operation is completed. Flag bit PSPIF must be cleared by user software and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE AS A PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	_		_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
0Ch	PIR1	PSPIF	(1)	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TRM1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	(1)	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000

TABLE 5-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved, always maintain these bits clear.

2: These bits are implemented on the PIC16C63/65/65A only.

NOTES:

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

All PIC16C6X devices have three timer modules except for the PIC16C61, which has one timer module. Each module can generate an interrupt to indicate that an event has occurred (i.e., timer overflow). Each of these modules are detailed in the following sections. The timer modules are:

- Timer0 module (Section 7.0)
- Timer1 module (Section 8.0)
- Timer2 module (Section 9.0)

6.1 <u>Timer0 Overview</u>

Applicable Devices 61|62|62A|R62|63|64|64A|R64|65|65A

The Timer0 module (previously known as RTCC) is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. TMR0 can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u> Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

TImer1 also has a prescaler option which allows TMR1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. TMR1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit compare and must be synchronized to the device.

6.3 <u>Timer2 Overview</u>

		able							
61	62	62A	R62	63	64	64A	R64	65	65A

Timer2 is an 8-bit timer with a programmable prescaler and a programmable postscaler, as well as an 8-bit Period Register (PR2). Timer2 can be used with the CCP1 module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16.

The postscaler allows TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 <u>CCP Overview</u>

Ар	plic	cable	e Dev	vice	s				
61	62	62A	R62	63	64	64A	R64	65	65A

The CCP module(s) can operate in one of three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs, an interrupt can be generated and the output pin CCP1 can be forced to a given state (High or Low) and Timer1 can be reset (CCP1). This depends on control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register value as well as to an 8-bit Period Register (PR2). When TMR2 register = PR2 register, the TMR2 register is cleared to 00h, an interrupt may be generated, and the CCPx pin (if an output) will be forced high. When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low.

^{© 1996} Microchip Technology Inc.

NOTES:

7.0 TIMER0 MODULE

Applicable Devices

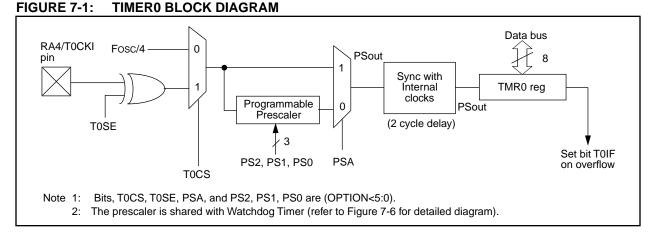
61 62 62A R62 63 64 64A R64 65 65A The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
 - Read and write capability
- Interrupt on overflow from FFh to 00h
- 8-bit software programmable prescaler
- Internal or external clock select
 - Edge select for external clock

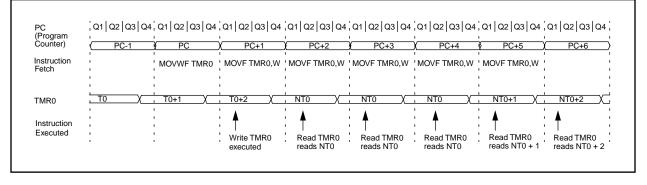
Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge select bit T0SE


(OPTION<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.


7.1 <u>Timer0 Interrupt</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The TMR0 interrupt is generated when the register (TMR0) overflows from FFh to 00h. This overflow sets interrupt flag bit T0IF (INTCON<2>). The interrupt can be masked by clearing enable bit T0IE (INTCON<5>). Flag bit T0IF must be cleared in software by the TImer0 interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. Figure 7-4 displays the Timer0 interrupt timing.

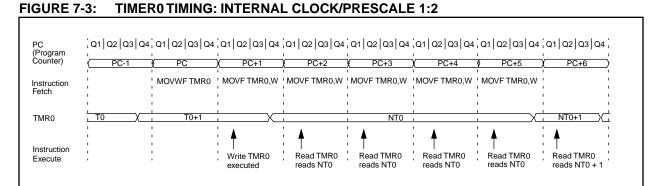
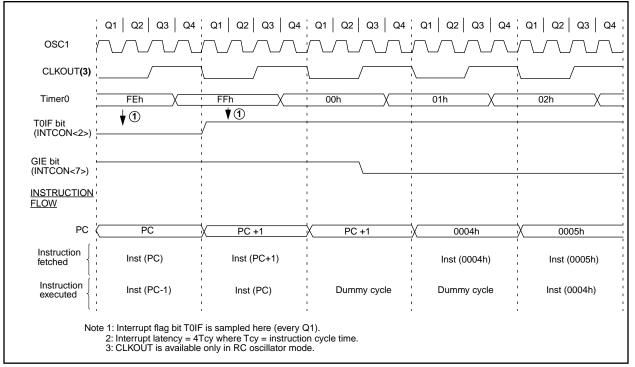


FIGURE 7-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALER



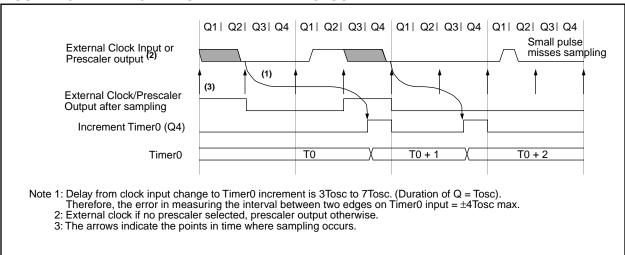
© 1996 Microchip Technology Inc.

PIC16C6X

FIGURE 7-4: TIMER0 INTERRUPT TIMING

7.2 Using Timer0 with External Clock

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

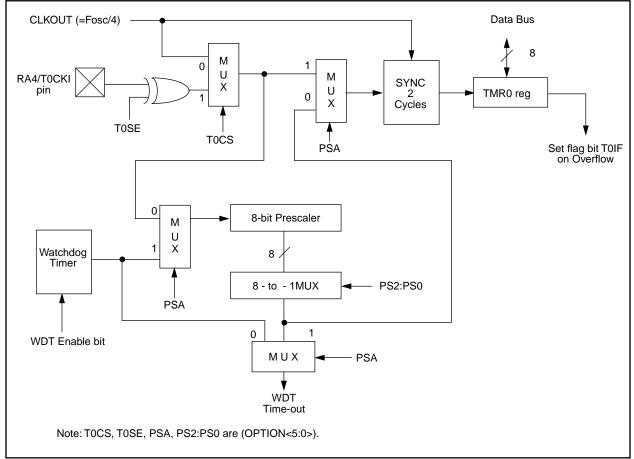
7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK


7.3 Prescaler

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x) will clear the prescaler count. When assigned to Watchdog Timer, a CLRWDT instruction will clear the prescaler count along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This precaution must be followed even if the WDT is disabled.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BCF	STATUS, RPO	;Bank 0
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
CLRWDT		;Clears WDT
MOVLW	b'xxxx1xxx'	;Select new prescale
MOVWF	OPTION_REG	;value & WDT
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other resets
01h	TMR0	Timer0	ïmer0 module's register							xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE ⁽¹⁾	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	TRISA5 ⁽¹⁾	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

Note 1: TRISA<5> and bit PEIE are not implemented on the PIC16C61, read as '0'.

NOTES:

8.0 TIMER1 MODULE

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H + TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled or disabled using the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- · As a counter

The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be turned on or off using the control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/64A/R64/65A, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

11.0	U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0							
U-0	T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON R = Readable bit							
bit7	bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset							
bit 7-6:	Unimplemented: Read as '0'							
bit 5-4:	T1CKPS1:T1CKPS0 : Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value							
bit 3:	T1OSCEN : Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain.							
bit 2:	TISYNC: Timer1 External Clock Input Synchronization Control bit							
	<u>TMR1CS = 1</u> 1 = Do not synchronize external clock input 0 = Synchronize external clock input							
	$\underline{\text{TMR1CS}} = 0$ This bit is ignored. Timer1 uses the external clock when TMR1CS = 0.							
bit 1:	TMR1CS : Timer1 Clock Source Select bit 1 = External clock from T1OSI (on the rising edge) (See pinouts for pin with T1OSI function) 0 = Internal clock (Fosc/4)							
bit 0:	TMR10N: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1							

8.1 <u>Timer1 Operation in Timer Mode</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Timer mode is selected by clearing bit TMR1CS (T1CON<1>). In this mode, the input clock to the timer is Fosc/4. The synchronize control bit $\overline{T1SYNC}$ (T1CON<2>) has no effect since the internal clock is always in sync.

8.2 <u>Timer1 Operation in Synchronized</u> <u>Counter Mode</u>

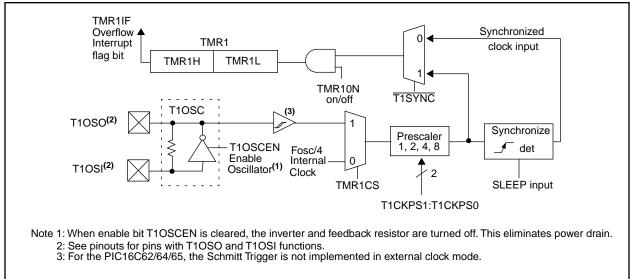
Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

Counter mode is selected by setting bit TMR1CS. In this mode the timer increments on every rising edge of clock input on T1OSI when enable bit T1OSCEN is set or pin with T1CKI when bit T1OSCEN is cleared.

Note:	The T1OSI function is multiplexed to differ-
	ent pins, depending on the device. See the
	pinout descriptions to see which pin has
	the T1OSI function.

If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.


In this configuration, during SLEEP mode, Timer1 will not increment even if an external clock is present, since the synchronization circuit is shut off. The prescaler, however, will continue to increment.

8.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in synchronized counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of TMR1 after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to appropriate electrical specification section, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripplecounter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to applicable electrical specification section, parameters 40, 42, 45, 46, and 47.

FIGURE 8-2: TIMER1 BLOCK DIAGRAM

8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

Applicable Devices											
61	62	62A	R62	63	64	64A	R64	65	65A		

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and generate an interrupt on overflow which will wake the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair, TMR1L and TMR1H (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters (45 - 47).

8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

;	All Int	errupts	are	disabled
	MOVF	-		
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
	MOVF	TMR1H,	W	;Read high byte
	SUBWF	TMPH,	W	;Sub 1st read
				;with 2nd read
	BTFSC	STATUS	, Z	;is result = 0
	GOTO	CONTINU	JE	;Good 16-bit read
;	TMR1L mag	y have r	olle	d over between the read
;	of the h	igh and	low	bytes. Reading the high
;	and low	bytes no	w w	ill read a good value.
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
;	Re-enal	ble Inte	rrup	ot (if required)
C	ONTINUE			;Continue with
	:			;your code

8.4 <u>Timer1 Oscillator</u>

 Applicable Devices

 61
 62
 62
 63
 64
 64A
 R64
 65
 65A

A crystal oscillator circuit is built in-between T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must allow a software time delay to ensure proper oscillator start-up.

TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2		
LP	32 kHz ⁽¹⁾	15 pF	15 pF		
	100 kHz 200 kHz	15 pF 0 - 15 pF	15 pF 0 - 15 pF		

Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only.

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

Crystals Tested:

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM								
100 kHz	Epson C-2 100.00 KC-P	± 20 PPM								
200 kHz	STD XTL 200.000 kHz	± 20 PPM								

8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

Applicable Devices													
61	62	62A	R62	63	64	64A	R64	65	65A				

CCP2 is implemented on the PIC16C63/65/65A only.

If CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCPxM3:CCPxM0 = 1011), this signal will reset Timer1.

Note:		"special									
	CCP1and CCP2 modules will not set inter-										
	rupt flag bit TMR1IF (PIR1<0>).										

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If the Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for the Timer1 module.

8.6 <u>Resetting of TMR1 Register Pair</u> (TMR1H + TMR1L)

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

The TMR1H and TMR1L registers are not reset on a POR or any other reset except by the CCP1 special event trigger.

T1CON register is reset to 00h on Power-on Reset or a Brown-out Reset. In all other resets, the register is unaffected.

8.7 <u>Timer1 Prescaler</u>

Applicable Devices											
61	62	62A	R62	63	64	64A	R64	65	65A		

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR		Value on all other resets	
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
0Eh	TMR1L	Holding re	egister	for the Leas	t Significant	Byte of the	16-bit TMI	R1 register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	egister	for the Most	Significant	Byte of the	16-bit TMF	R1 register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Timer1 module.

Note 1: The USART is implemented on the PIC16C63/65/65A only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

9.0 TIMER2 MODULE

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Timer2 is an 8-bit timer with a prescaler and a postscaler. It is especially suitable as PWM time-base for PWM mode of CCP module(s). TMR2 is a readable and writable register, and is cleared on any device reset.

The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16 (selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is set during a reset.

The match output of the TMR2 register goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling, inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF (PIR1<1>).

The Timer2 module can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

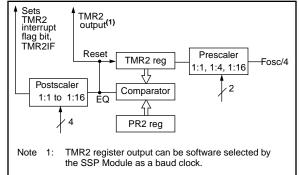
Figure 9-2 shows the Timer2 control register.

9.1 <u>Timer2 Prescaler and Postscaler</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device reset (POR, BOR, MCLR Reset, or WDT Reset).


TMR2 register will not clear when T2CON is written, only for a WDT, BOR, POR, and $\overline{\text{MCLR}}$ reset.

9.2 Output of TMR2

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 9-1: TIMER2 BLOCK DIAGRAM

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

	DAMA	DAVA	DAVO	DAMA	DAMA	DAMO	DAMO	
U-0	R/W-0	R/W-0	R/W-0	R/W-0 TOUTPS0	R/W-0 TMR2ON	R/W-0 T2CKPS1	R/W-0 T2CKPS0	R = Readable bit
bit7				10011 30		12011 31	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	Unimplem	ented: Rea	d as '0'					
bit 6-3:	TOUTPS3: 0000 = 1:1 0001 = 1:2 • 1111 = 1:10	postscale postscale		tput Postsca	ale Select bi	ts		
bit 2:	TMR2ON : 1 1 = Timer2 0 = Timer2	is on	oit					
bit 1-0:	T2CKPS1: 00 = 1:1 pro 01 = 1:4 pro 1x = 1:16 p	escale escale	Timer2 Clo	ck Prescale	Select bits			

© 1996 Microchip Technology Inc.

TABLE 9-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR		Value on all other resets	
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
11h	TMR2	Timer2 m	odule's reg	ister						0000	0000	0000	0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer2 Pe	eriod regist		1111	1111	1111	1111					

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer2.

Note 1: The USART is implemented on the PIC16C63/65/65A only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

10.0 CAPTURE/COMPARE/PWM (CCP) MODULE(s)

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A CCP1 61 62 62A R62 63 64 64A R64 65 65A CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM master/slave duty cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP modules(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the *Embedded Control Handbook*, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)

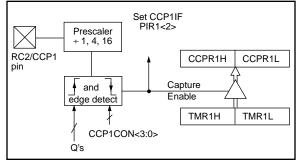
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
—	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit					
bit7							bit0	W = Writable bit					
								U = Unimplemented bit,					
								read as '0'					
								- n =Value at POR reset					
bit 7-6:	bit 7-6: Unimplemented: Read as '0'												
bit 5-4:	bit 5-4: CCPxX:CCPxY: PWM Least Significant bits												
	-	<u>ire Mode</u>											
	Unuse												
	Unuse	oare Mode											
		Mode											
			he two LS	bs of the P	WM duty cv	cle. The eial	ht MSbs are	found in CCPRxL.					
bit 2 0.				Mode Sel									
bit 3-0.					resets CCP	x module)							
				very falling e		x moduloj							
		•		ery rising e	•								
	0110	= Capture	e mode, ev	ery 4th risi	ng edge								
				ery 16th ris									
					n match (bit								
					on match (l								
								F is set, CCPx pin is unaffected)					
		= Compar = PWM m		igger speci	ai event (CC	PXIF DIT IS S	set; CCP1 res	sets TMR1; CCP2 resets TMR1)					
	TTXX		IUUE										

10.1 Capture Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1 (Figure 10-2). An event is defined as:

- A falling edge
- A rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be reset in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In capture mode, the RC2/CCP1 pin should be configured as an input by setting its corresponding TRIS bit.

Note:	If the RC2/CCP1 pin is configured as an
	output, a write to the port can cause a cap-
	ture condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep enable bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear flag bit CCP1IF following any such change in operating mode.

10.1.4 PRESCALER

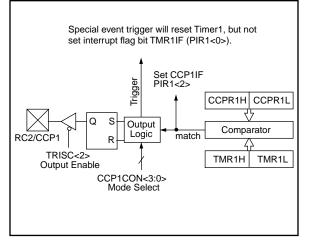
There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 10-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	mode value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

10.2 Compare Mode


Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, a compare interrupt is also generated.

FIGURE 10-3: COMPARE MODE OPERATION BLOCK DIAGRAM

10.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

10.2.1 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

10.2.2 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

10.2.3 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

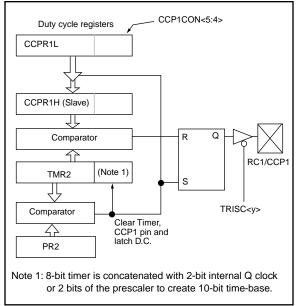
The special event trigger output of CCP1 and CCP2 resets the TMR1 register pair. This allows the CCPR1 and CCPR2 registers to effectively be 16-bit programmable period register for Timer1.

For compatibility issues, the special event trigger output of CCP2 on $\underline{\text{PIC16C7X}}$ devices also starts an A/D conversion.

Note: The "special event trigger" from the CCP1and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

10.3 PWM Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCPx pin is multiplexed with the PORTC data latch, the corresponding TRISC bit must be cleared to make the CCPx pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

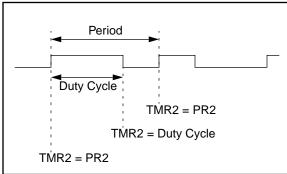

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] * 4 * Tosc * (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 9.1) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) * Tosc * (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, the CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Note: If the PWM duty cycle value is longer than the PWM period (PWM duty cycle = 100%), the CCP1 pin will not be cleared.

EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION

Desired PWM frequency is 78.125 kHz, Fosc = 20 MHz TMR2 prescale = 1

1/78.125 kHz = [(PR2) + 1] * 4 * 1/20 MHz * 112.8 µs = [(PR2) + 1] * 4 * 50 ns * 1 PR2 = 63

Find the maximum resolution of the duty cycle that can be used with a 78.125 kHz frequency and 20 MHz oscillator:

1/78.125 kHz	$z = 2^{\text{PWM RESOLUTION}} * 1/20 \text{ MHz} * 1$
12.8 µs	= 2 ^{PWM RESOLUTION} * 50 ns * 1
256	= 2 ^{PWM RESOLUTION}
log(256)	= (PWM Resolution) * log(2)
8.0	= PWM Resolution

At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and a 20 MHz oscillator, i.e., $0 \le CCPR1L:CCP1CON<5:4> \le 255$. Any value greater than 255 will result in a 100% duty cycle. In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased.

Table 10-3 lists example PWM frequencies and resolutions for Fosc = 20 MHz. TMR2 prescaler and PR2 values are also shown.

10.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the appropriate TRISC bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP module for PWM operation.

TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 10-4 :	REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR		Value on all other Resets	
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh ⁽⁴⁾	PIR2	_	_	—	_	_	_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh ⁽⁴⁾	PIE2	_	_	—		_	—	_	CCP2IE		0		0
0Eh	TMR1L	Holding re	gister	for the Leas	st Significar	nt Byte of the	e 16-bit TM	IR1 registe	er	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	gister	for the Mos	t Significan	t Byte of the	e 16-bit TM	R1 registe	er	xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture/C	compar	e/PWM1 (L	SB)		•			xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	compar	e/PWM1 (N	ISB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh ⁽⁴⁾	CCPR2L	Capture/Compare/PWM2 (LSB)									xxxx	uuuu	uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/Compare/PWM2 (MSB)								xxxx	xxxx	uuuu	uuuu
1Dh ⁽⁴⁾	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes.

Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/65/65A only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.

3: These bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is implemented on the PIC16C63/65/65A only.

1Dh⁽⁴⁾ CCP2CON

TABL	E 10-5:	REGIST	ERS AS	SOCIATE	ED WITH	PWM AN	ID TIME	R2					
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR		all o	e on other sets
0Bh/8 Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh ⁽⁴⁾	PIR2	_	_	_	_	_	_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh ⁽⁴⁾	PIE2	_	—	_	_	_	_	_	CCP2IE		0		0
11h	TMR2	Timer2 m	odule's regis	ster						0000	0000	0000	0000
92h	PR2	Timer2 m	odule's Peri	od register						1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/C	compare/PV	VM1 (LSB)						xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	compare/PV	VM1 (MSB)						xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh ⁽⁴⁾	CCPR2L	Capture/Compare/PWM2 (LSB)									xxxx	uuuu	uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/C	compare/PV	VM2 (MSB)						xxxx	xxxx	uuuu	uuuu

x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode. Legend:

CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000

Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/65/65A only.

CCP2Y

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.

CCP2X

3: These bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is implemented on the PIC16C63/65/65A only.

11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

 Applicable Devices

 61
 62
 62
 63
 64
 64A
 R64
 65
 65A

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

Refer to Application Note AN578, "Use of the SSP Module in the l^2C Multi-Master Environment."

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
	—	D/Ā	Р	S	R/W	UA	BF	R = Readable bit W = Writable bit			
bit7							bit0	U = Unimplemented bit, read as '0' - n =Value at POR reset			
bit 7-6:	Unim	plemente	d: Read a	s '0'							
bit 5:	1 = In 0 = In	dicates the dicates the	at the last at the last	byte receiv	ed or transn ed or transn	nitted was a	ddress				
bit 4:	$1 = \ln \theta$	dicates the	mode only at a stop b s not deteo	it has beer	cleared when detected la	en the SSP st (this bit is	module is di s '0' on RES	sabled, SSPEN is cleared) ET)			
bit 3:	S : Start bit (I^2C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last										
bit 2:	R/W : Read/Write bit information (I ² C mode only) This bit holds the R/W bit information following the last address match. This bit is valid from the address match to the next start bit, stop bit, or \overline{ACK} bit. 1 = Read 0 = Write										
bit 1:	$1 = \ln \theta$	dicates the	at the use	bit I ² C mod needs to up d to be upo	update the a	ddress in th	e SSPADD	register			
bit 0:	BF: B	uffer Full S	Status bit								
	<u>Receive</u> (SPI and I ² C modes) 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty										
	1 = Trate	ansmit in I		SSPBUF is PBUF is e							

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: W 1 = The SS (must be c 0 = No col	SPBUF reg leared in s	jister is wi		e it is still tr	ansmitting	the previo	us word
bit 6:	SSPOV: R	eceive Ove	erflow Det	ect bit				
	the data in BUF, even	byte is rece SSPSR re if only tran new rece	egister is I	ost. Overfl data, to av	ow can on void setting	lly occur ir g overflow.	slave mod In master	revious data. In case of overflow le. The user must read the SSP mode the overflow bit is not se SSPBUF register.
	$\frac{\ln I^2 C \mod 1}{1 = A \text{ byte}}$ in transmit 0 = No over	is received mode. SS						us byte. SSPOV is a "don't care
bit 5:	SSPEN: S	ynchronou	s Serial P	ort Enable	e bit			
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$	es serial po					s serial por pins	t pins
	0 = Disable	es the seria es serial p	ort and co	nfigures th	nese pins a	as I/O port	pins	ial port pins s input or output.
bit 4:	CKP: Cloc	k Polarity	Select bit					
		nit happens						or clock is a high level. or clock is a low level.
	$\frac{\ln l^2 C \mod SCK}{SCK}$ relea	se control e clock					<i></i>	
L H 0 0	0 = Holds	-					p time)	
DIT 3-U:	$0110 = ^{2}(0)$ $0111 = ^{2}(0)$ $1011 = ^{2}(0)$	PI master n PI master n PI master n PI master n PI slave mo C slave mo C slave mo C slave mo C start and C slave mo	node, cloc node, cloc node, cloc ode, clock ode, clock de, 7-bit a de, 10-bit stop bit ir de, 7-bit a	k = Fosc/2 k = Fosc/2 k = Fosc/2 k = TMR2 = SCK pir = SCK pir ddress address address wi	4 output/2 o. SS pin co o. SS pin co nabled (slo nabled (slo	ontrol enal ontrol disa ave idle) d stop bit i	bled. SS ca	n be used as I/O pin. nabled

11.1 SPI Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

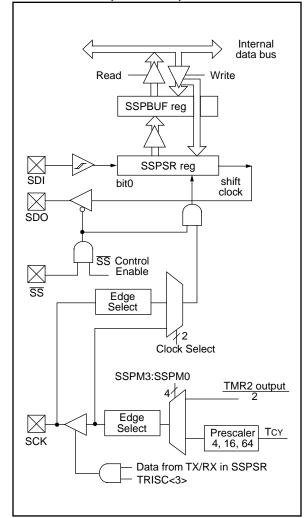
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the Buffer Full bit, BF (SSPSTAT<0>) and flag bit SSPIF are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON<7>) will be set. User software must clear bit WCOL so that it can be determined if the following write(s) to the SSPBUF completed successfully. When the application software is expecting to receive valid data, the SSPBUF register should be read before the next byte of data to transfer is written to the SSPBUF register. The Buffer Full bit BF (SSPSTAT<0>) indicates when the SSPBUF register has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF register must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-1 shows the loading of the SSPBUF (SSPSR) register for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-1: LOADING THE SSPBUF (SSPSR) REGISTER

		•	,	
	BSF	STATUS,	RP0	;Specify Bank 1
LOOP	BTFSS	SSPSTAT,	BF	;Has data been
				;received
				;(transmit
				;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents
				;of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents
				; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-3), shows that the SSPSR register is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-3: SSP BLOCK DIAGRAM (SPI MODE)

To enable the serial port, SSP enable bit SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear enable bit SSPEN, re-initialize SSPCON register, and then set enable bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if implemented)

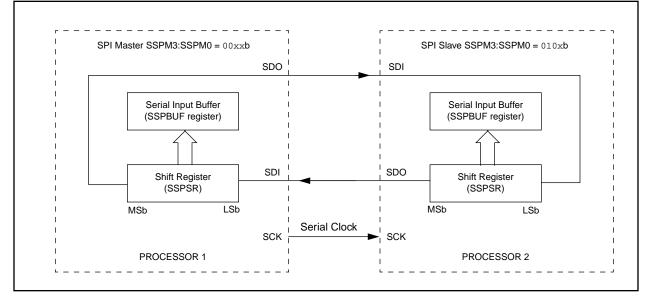
Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and SS could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-4 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the software protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.

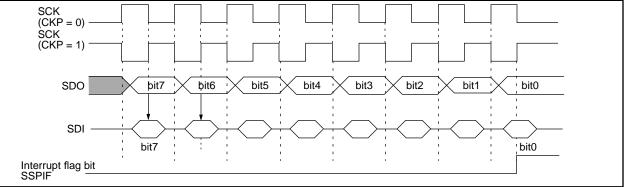

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched interrupt flag bit SSPIF (PIR1<3>) is set.

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-5 and Figure 11-6 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

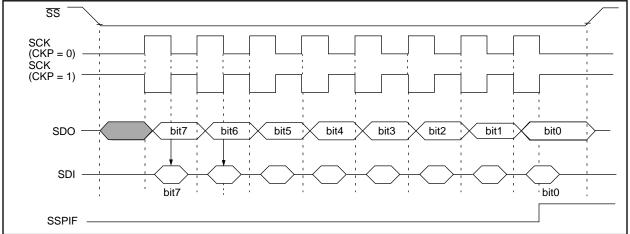
- Fosc/4 (or TCY)
- Fosc/16 (or 4 TCY)
- Fosc/64 (or 16 TCY)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.


FIGURE 11-4: SPI MASTER/SLAVE CONNECTION

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set the for synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the SS pin is taken low without resetting SPI mode, the transmission will continue from the point at


which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-6: SPI MODE TIMING (SLAVE MODE WITH SS CONTROL)

TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchron	ous Serial	Port Rece	eive Buffer	/Transmit	Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
94h	SSPSTAT		—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.

Note 1: These bits are associated with the USART which is implemented on the PIC16C63/65/65A only.

2: PSPIF and PSPIE are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

11.2 <u>I²C Overview</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

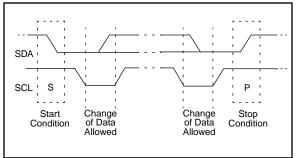
This section provides an overview of the Inter-Integrated Circuit (l^2C) bus, with Section 11.3 discussing the operation of the SSP module in l^2C mode.

The l^2C bus is a two-wire serial interface developed by the Philips Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. An enhanced specification, or fast mode, supports data transmission up to 400 Kbps. Both standard mode and fast mode devices will inter-operate if attached to the same bus.

The l^2C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master", which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-2 defines some of the l^2C bus terminology. For additional information on the l^2C interface specification, refer to the Philips Corporation document "*The* l^2C bus and how to use it." #939839340011, which can be obtained from the Philips Corporation.

In the I²C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from / write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of operating in either of these two relations:

· Master-transmitter and Slave-receiver


- Slave-transmitter and Master-receiver
- In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the l^2C bus is limited only by the maximum bus loading specification of 400 pF.

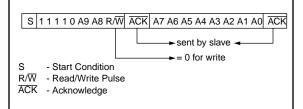
11.2.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. Figure 11-7 shows the START and STOP conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted the SDA line can only change state when the SCL line is low.

FIGURE 11-7: START AND STOP CONDITIONS

Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

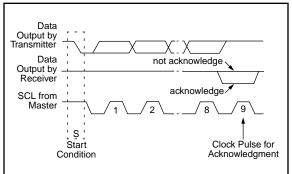
TABLE 11-2: I²C BUS TERMINOLOGY


11.2.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/\overline{W} bit (Figure 11-8). The more complex is the 10-bit address with a R/\overline{W} bit (Figure 11-9). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

	N			LSb						
	s							R/W	ACK	
			slav	e ad	dres	is —] 5	Sent by Slave	
R/W -	S - Start Condition R/W - Read/Write pulse ACK - Acknowledge									

FIGURE 11-8: 7-BIT ADDRESS FORMAT


FIGURE 11-9: I²C 10-BIT ADDRESS FORMAT

11.2.3 TRANSFER ACKNOWLEDGE

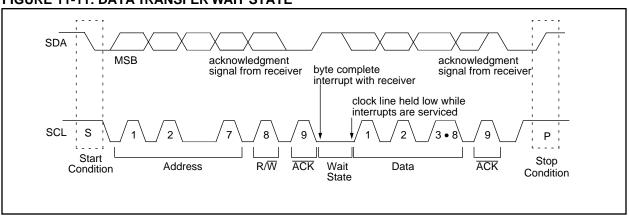

All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowl-edge bit (ACK) (Figure 11-10). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave the SDA line high so that the master can generate the STOP condition (Figure 11-7).

FIGURE 11-10: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-11. The slave will inherently stretch the clock when it is a transmitter but will not when it is a receiver. The slave will have to clear the SSPCON <4> bit to enable clock stretching when it is a receiver.

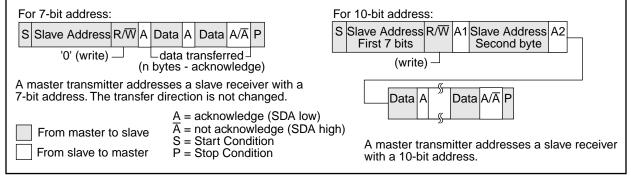
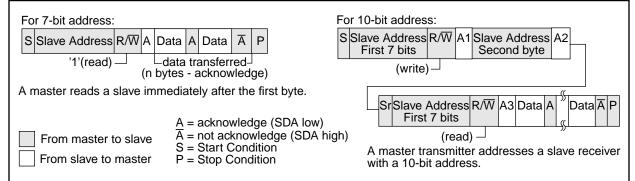

FIGURE 11-11: DATA TRANSFER WAIT STATE

Figure 11-12 and Figure 11-13 show Master-transmitter and Master-receiver data transfer sequences.


When a master does not wish to relinquish the bus (by generating a STOP condition), a repeated START condition (Sr) must be generated. This condition is identical to the start condition (SDA goes high-to-low while SCL

is high), but occurs after a data transfer acknowledge pulse (not the bus-free state). This allows a master to send "commands" to the slave and then receive the requested information or to address a different slave device. This sequence is shown in Figure 11-14.

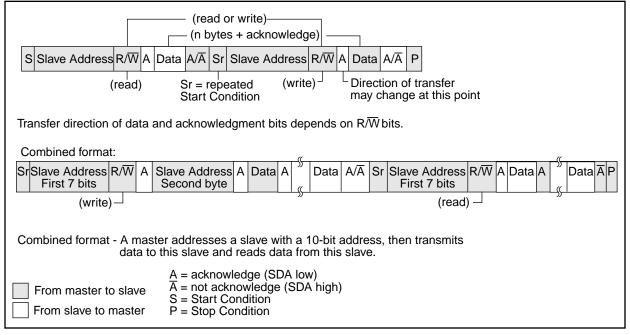
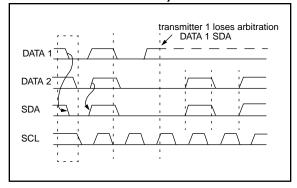

FIGURE 11-12: MASTER-TRANSMITTER SEQUENCE

FIGURE 11-13: MASTER-RECEIVER SEQUENCE

FIGURE 11-14: COMBINED FORMAT


11.2.4 MULTI-MASTER

The I²C protocol allows a system to have more than one master. This is called multi-master. When two or more masters try to transfer data at the same time, arbitration and synchronization occur.

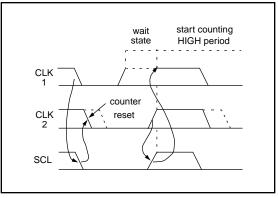
11.2.4.1 ARBITRATION

Arbitration takes place on the SDA line, while the SCL line is high. The master which transmits a high when the other master transmits a low loses arbitration (Figure 11-15), and turns off its data output stage. A master which lost arbitration can generate clock pulses until the end of the data byte where it lost arbitration. When the master devices are addressing the same device, arbitration continues into the data.

FIGURE 11-15: MULTI-MASTER ARBITRATION (TWO MASTERS)

Masters that also incorporate the slave function, and have lost arbitration must immediately switch over to slave-receiver mode. This is because the winning master-transmitter may be addressing it.

Arbitration is not allowed between:

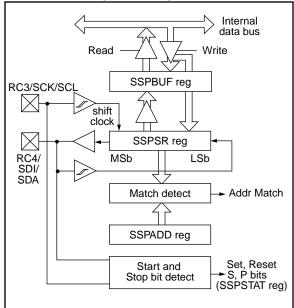

- A repeated START condition
- · A STOP condition and a data bit
- A repeated START condition and a STOP condition

Care needs to be taken to ensure that these conditions do not occur.

11.2.4.2 Clock Synchronization

Clock synchronization occurs after the devices have started arbitration. This is performed using a wired-AND connection to the SCL line. A high to low transition on the SCL line causes the concerned devices to start counting off their low period. Once a device clock has gone low, it will hold the SCL line low until its SCL high state is reached. The low to high transition of this clock may not change the state of the SCL line, if another device clock is still within its low period. The SCL line is held low by the device with the longest low period. Devices with shorter low periods enter a high wait-state, until the SCL line comes high. When the SCL line comes high, all devices start counting off their high periods. The first device to complete its high period will pull the SCL line low. The SCL line high time is determined by the device with the shortest high period, Figure 11-16.

FIGURE 11-16: CLOCK SYNCHRONIZATION



11.3 <u>SSP I²C Operation</u>

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The SSP module in I²C mode fully implements all slave functions (except general call support), and provides interrupts on start and stop bits in hardware to facilitate software implementations of the master functions. The SSP module implements the standard and fast mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>).

FIGURE 11-17: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for ${\rm I}^2{\rm C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the l^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following l^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with startandstop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C start and stop bit interrupts enabled, slave is idle

Selection of any I^2C mode, with enable bit SSPEN set, forces the SCL and SDA pins to be open drains, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address, if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written-to or read-from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSP-BUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and overflow detect bit SSPOV (SSPCON<6>) is set, and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

11.3.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF register, but interrupt flag bit SSPIF (PIR1<3>) is set. Table 11-3 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while overflow bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and bits BF and SSPOV are clear, the following events occur:

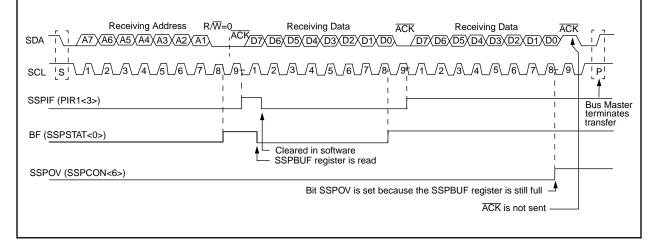
- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on falling edge of ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-9). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write, so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address are as follows with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with first (high) byte of Address (if match releases SCL line, this will clear bit UA).
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set)
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

	ts as Data s Received			Set bit SSPIF		
BF	SSPOV	SSPSR →SSPBUF	Generate ACK Pulse	(SSP Interrupt occurs if Enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

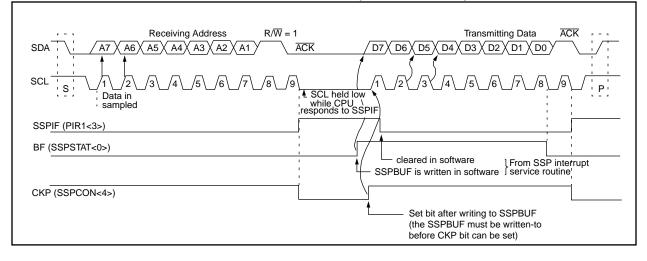
TABLE 11-3: DATA TRANSFER RECEIVED BYTE ACTIONS


11.3.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, bit R/\overline{W} (SSPSTAT<2>) is cleared. The received address is loaded into the SSP-BUF register.

When the address byte overflow condition exists then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

A SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software, and the SSPSTAT register is used to determine the status of the byte.


FIGURE 11-18: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

11.3.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, bit R/\overline{W} (SSPSTAT<2>) is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and the SCL pin is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then the SCL pin should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-19). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then the SCL pin should be enabled by setting bit CKP.

FIGURE 11-19: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

11.3.2 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared by a reset or when the SSP module is disabled. Control of the l^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a'1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause the SSP Interrupt Flag bit SSPIF to be set (SSP Interrupt occurs if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.3.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. Control of the f^2 C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle with both bits S and P clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage communication to the device may be in progress. If addressed, an \overrightarrow{ACK} pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0B/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchron	ous Serial	Port Rece	eive Buffer	r/Transmit	Register			XXXX XXXX	uuuu uuuu
93h	SSPADD	Synchron	ous Serial	Port (I ² C	mode) Ad	dress Reg	jister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
94h	SSPSTAT	_		D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000

TABLE 11-4: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by the SSP module in I²C mode.

Note 1: These bits are associated with the USART and are implemented on the PIC16C63/65/65A only.

2: PSPIF and PSPIE are reserved on the PIC16C62/62A/R62/63, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

FIGURE 11-20: OPERATION OF THE I²C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE

IDLE_MODE (7-bit): if (Addr_match)	1	Set interrupt	
if (Addr_match)	{	Set interrupt; if $(R/\overline{W} = 1)$	{ Send $\overline{ACK} = 0$;
			set XMIT_MODE;
		else if (R/W –	} = 0) set RCV_MODE;
	}		
RCV_MODE:			
if ((SSPBUF=Full) OR (SSF			
{ Set SSP			
Do not a }	icknowledge;		
-	$SSPSR \rightarrow SSPSR$	SPBUF;	
send AC			
}			
Receive 8-bits in SSPSR;			
Set interrupt; XMIT_MODE:			
While ((SSPBUF = Empty)	AND (CKP=0)) Hold SCL Low	N:
Send byte;	()	,	
Set interrupt;			
if (\overline{ACK} Received = 1)	{	End of transm	
	ı	Go back to ID	DLE_MODE;
else if (\overline{ACK} Received = 0)	} Go back to X		
IDLE_MODE (10-Bit):		(MIT_MODE,	
If (High_byte_addr_match A	AND $(R/\overline{W} = 0)$))	
	_ADDR_MATC	CH = FALSE;	
Set inter			
		R ((SSPOV = 1)) SPOV;))
		t acknowledge;	
	}		
else	{ Set U		
		ACK = 0;	
		(SSPADD not u) UA = 0;	updated) Hold SCL low;
		ve Low_addr_by	vvte:
		terrupt;	
	Set U		
	If (Lov	v_byte_addr_ma	
			DR_ADDR_MATCH = TRUE; d ACK = 0;
			e (SSPADD not updated) Hold SCL low;
			r UA = 0;
			RCV_MODE;
		}	
	}		
}			
else if (High_byte_addr_ma	tch AND (R/W	/̄ = 1)	
	R_ADDR_MA		
		ACK = 0;	
	-	/IT_MODE;	
	}		
		541.05	
EISE FRIOR_AD	DR_MATCH =	FALSE;	

NOTES:

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also know as a Serial Communications Interface or SCI) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

FIGURE 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	CSRC: Clo	ck Source	Select bit					
	Asynchrone Don't care	<u>ous mode</u>						
	Synchrono 1 = Master 0 = Slave n	mode (Clo				(G)		
bit 6:	TX9 : 9-bit 7 1 = Selects 0 = Selects	9-bit trans	smission					
bit 5:	TXEN : Tran 1 = Transm 0 = Transm Note: SREI	it enabled it disabled	le bit verrides TX	EN in SYI	NC mode.			
bit 4:	SYNC : US/ 1 = Synchr 0 = Asynch	onous mod	de					
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	BRGH: Hig	h Baud Ra	te Select b	t				
	Asynchron							
	1 = High sp		e of this pri	nting the	asynchron	ous hiah si	need mode (BRGH is set) may
	Note:	experience If you des	e a high rai	e of recei	ive errors. I	t is recomm	nended to ha	ave the BRGH bit cleared. r to the device errata for
	0 = Low sp	eed						
	Synchrono Unused in t							
bit 1:	TRMT : Trar 1 = TSR en 0 = TSR ful	npty	Register St	atus bit				
bit 0:	TX9D : 9th I	bit of trans	mit data. Ca	in be pari	ty bit.			

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	R	= Readable bit
bit7							bitO	W U - n x	 = Writable bit = Unimplemented bit, read as '0' = Value at POR rese = unknown
bit 7:	SPEN : Ser (Configures 1 = Serial p 0 = Serial p	s RC7/RX/l	DT and RC d	6/TX/CK	oins as seri	al port pins	s when bits	TRIS	C<7:6> are set)
bit 6:	RX9 : 9-bit 1 = Selects 0 = Selects	9-bit rece	ption						
bit 5:	SREN: Sin	gle Receive	e Enable bi	t					
	<u>Asynchron</u> Don't care	<u>ous mode</u>							
	$\frac{\text{Synchrono}}{1 = \text{Enable}}$ $0 = \text{Disable}$ This bit is c	s single rea s single re	ceive ceive	is comple	ete.				
	<u>Synchrono</u> Unused in		<u>slave</u>						
bit 4:	CREN: Cor	ntinuous Re	eceive Enal	ble bit					
	$\frac{\text{Asynchron}}{1 = \text{Enable}}$ $0 = \text{Disable}$	s continuo							
	Synchrono 1 = Enable 0 = Disable	s continuo	us receive u us receive	until enabl	e bit CREN	l is cleared	(CREN ov	erride	s SREN)
bit 3:	Unimplem	ented: Rea	ad as '0'						
bit 2:	FERR: Fran 1 = Framin 0 = No fran	g error (Ca	bit n be updat	ed by read	ling RCRE	G register)			
bit 1:	OERR : Ove 1 = Overru 0 = No ove	n error (Ca		d by clear	ing bit CRI	EN)			
bit 0:	RX9D : 9th								

12.1 USART Baud Rate Generator (BRG)

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

 $X = \lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = <u>(Calculated Baud Rate Desired Baud Rate)</u> Desired Baud Rate
 - = (9615 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Note: At the time of this printing, the asynchronous high speed mode (BRGH is set) may experience a high rate of receive errors. It is recommended to have the BRGH bit cleared. If you desire a higher baud rate than BRGH=0 can support, refer to the device errata for additional information.

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = FOSC/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
99h	SPBRG	Baud Rat	te Genera	tor Registe	er					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE

BAUD RATE	Fosc = 20) MHz	SPBRG value	16 MHz		SPBRG value	10 MHz		SPBRG value	7.15909 M	Hz	SPBRG value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

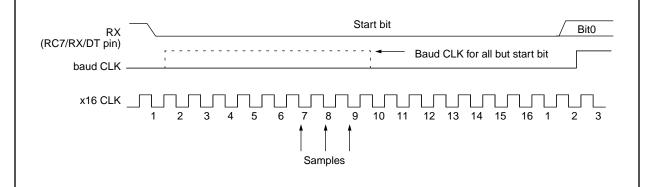
BAUD	FOSC = 5.	0688 MHz	SPBRG value	3.579545 I	MHz	SPBRG value	1 MHz		SPBRG value	32.768 kHz	<u>r</u>	SPBRG value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

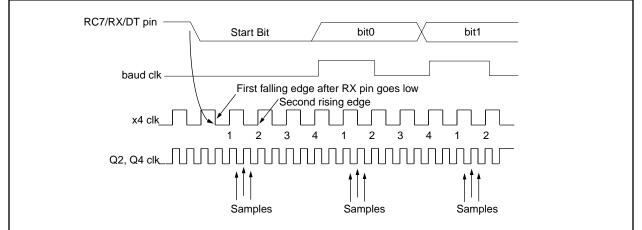
BAUD RATE (K)	Fosc = 20 KBAUD) MHz %ERROR	SPBRG value (decimal)	16 MHz KBAUD	%ERROR	SPBRG value (decimal)	10 MHz KBAUD	%ERROR	SPBRG value (decimal)	7.15909 M KBAUD	Hz %ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

BAUD RATE (K)	Fosc = 5. KBAUD	0688 MHz %ERROR	SPBRG value (decimal)	3.579545 I KBAUD	MHz %ERROR	SPBRG value (decimal)	1 MHz KBAUD	%ERROR	SPBRG value (decimal)	32.768 kH: KBAUD	z %ERROR	SPBRG value (decimal)
0.3	0.31	+3.13	255	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255

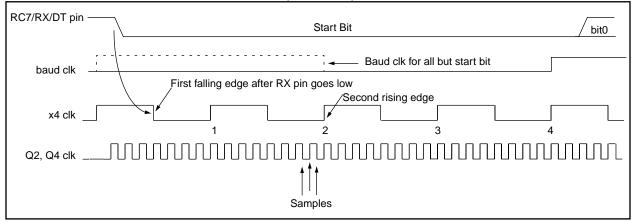
TABLE 12-5:	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)
-------------	---


BAUD RATE (K)	Fosc = 20 KBAUD) MHz %ERROR	SPBRG value (decimal)	16 MHz KBAUD	%ERROR	SPBRG value (decimal)	10 MHz KBAUD	%ERROR	SPBRG value (decimal)	7.16 MHz KBAUD	%ERROR	SPBRG value (decimal)
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64	9.520	-0.83	46
19.2	19.230	+0.16	64	19.230	+0.16	51	18.939	-1.36	32	19.454	+1.32	22
38.4	37.878	-1.36	32	38.461	+0.16	25	39.062	+1.7	15	37.286	-2.90	11
57.6	56.818	-1.36	21	58.823	+2.12	16	56.818	-1.36	10	55.930	-2.90	7
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.51	4	111.860	-2.90	3
250	250	0	4	250	0	3	NA	-	-	NA	-	-
625	625	0	1	NA	-	-	625	0	0	NA	-	-
1250	1250	0	0	NA	-	-	NA	-	-	NA	-	-

BAUD RATE (K)	Fosc = 5. KBAUD	068 MHz %ERROR	SPBRG value (decimal)	3.579 MHz KBAUD	%ERROR	SPBRG value (decimal)	1 MHz KBAUD	%ERROR	SPBRG value (decimal)	32.768 k⊢ KBAUD	lz %ERROR	SPBRG value (decimal)
9.6	9.6	0	32	9.727	+1.32	22	8.928	-6.99	6	NA	-	-
19.2	18.645	-2.94	16	18.643	-2.90	11	20.833	+8.51	2	NA	-	-
38.4	39.6	+3.12	7	37.286	-2.90	5	31.25	-18.61	1	NA	-	-
57.6	52.8	-8.33	5	55.930	-2.90	3	62.5	+8.51	0	NA	-	-
115.2	105.6	-8.33	2	111.860	-2.90	1	NA	-	-	NA	-	-
250	NA	-	-	223.721	-10.51	0	NA	-	-	NA	-	-
625	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1250	NA	-	-	NA	-	-	NA	-	-	NA	-	-


12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).



12.2 USART Asynchronous Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

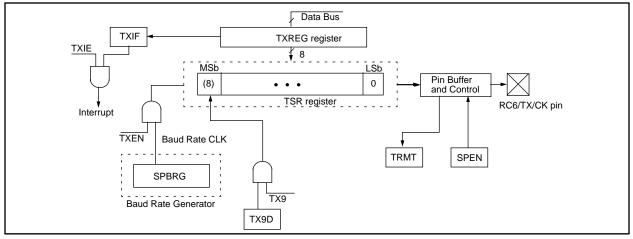
In this mode, the USART uses standard nonreturn-tozero (NRZ) format (one start bit, eight or nine data bits and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

12.2.1 USART ASYNCHRONOUS TRANSMITTER


The USART transmitter block diagram is shown in Figure 12-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY) the TXREG register is empty and flag bit TXIF

(PIR1<4>) is set. This interrupt is enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data memory so it is not available to the user.
Note 2:	Flag bit TXIF is set when enable bit TXEN is set.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 12-6). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register resulting in an empty TXREG register. A back-to-back transfer is thus possible (Figure 12-8). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit maybe loaded in the TSR register.

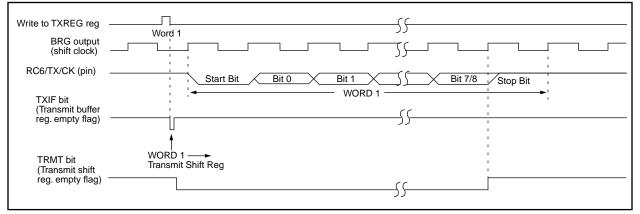
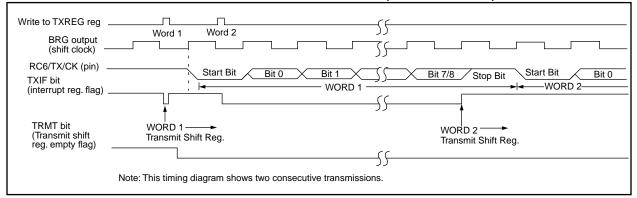


FIGURE 12-6: USART TRANSMIT BLOCK DIAGRAM


Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, then set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

FIGURE 12-7: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

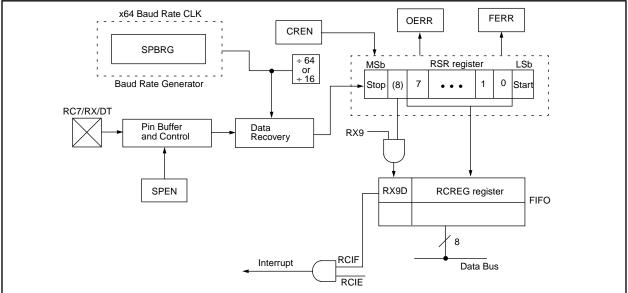
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	тхз	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	tor Registe	ər					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

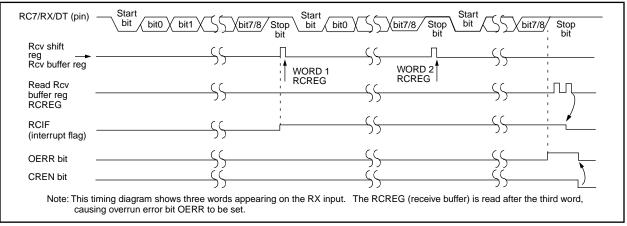
Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

12.2.2 USART ASYNCHRONOUS RECEIVER


The receiver block diagram is shown in Figure 12-9. The data comes in the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).


The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is double buffered register, i.e., it is a two deep FIFO. It is

possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear overrun bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a stop bit is detected as clear. Error bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will load bits RX9D and FERR with new values. Therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

FIGURE 12-10: ASYNCHRONOUS RECEPTION

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting enable bit CREN.

- 6. Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: PSPIE and PSPIF are reserved on the PIC16C63, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

12.3 USART Synchronous Master Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

In Synchronous Master mode the data is transmitted in a half-duplex manner i.e., transmission and reception do not occur at the same time. When transmitting data the reception is inhibited and vice versa. The synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6 and RC7 I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

12.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 12-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR register is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG register is empty and interrupt flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the status of enable bit TXIE and cannot be cleared in software. It will clear only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR register is not mapped in data memory so it is not available to the user.

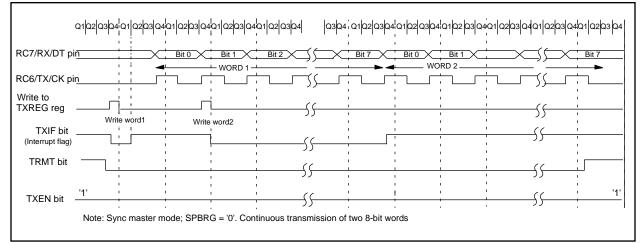
Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 12-11). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. This is advantageous when slow baud rates are selected, since the BRG is kept in reset when bits TXEN, CREN, and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG register. Back-to-back transfers are possible.

Clearing enable bit TXEN, during a transmission, will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hi-impedance. If, during a transmission, either bit CREN or bit SREN are set the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic however, is not reset although it is disconnected from the pins. In order to reset the transmitter, the user has to clear enable bit TXEN. If enable bit SREN is set (to interrupt an on going transmission and receive a single word), then after the single word is received, enable bit SREN will be cleared, and the serial port will revert back to transmitting since enable bit TXEN is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, enable bit TXEN should be cleared.

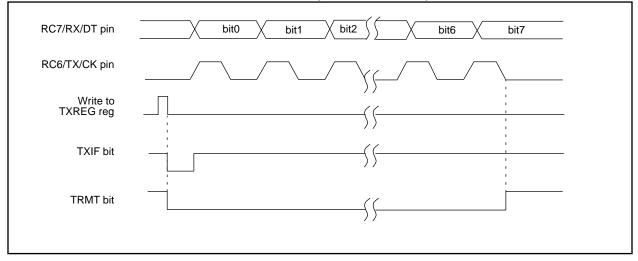
In order to select 9-bit transmission, bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR register was empty and the TXREG register was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.


TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	ТХЗ	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Regist	ter					0000 0000	0000 0000


Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Master Transmission. Note 1: PSPIE and PSPIF are reserved on the PIC16C63, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

FIGURE 12-11: SYNCHRONOUS TRANSMISSION

FIGURE 12-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

12.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous Mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) bit or enable bit CREN (RCSTA<4>). Data is sampled on the DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until bit CREN is cleared. If both the bits are set then bit CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit, OERR (RCSTA<1>) is set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun error bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value. Therefore it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old RX9D bit information.

Steps to follow when setting up Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- If a single reception is required, set enable bit SREN. For continuous reception set enable bit CREN.
- 7. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

 TABLE 12-9:
 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

FIGURE 12-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN) a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4a1a2a3a4 RC7/RX/DT pin bit0 bit2 bit3 bit4 bit6 bit7 bit1 bit5 RC6/TX/CK pin Write to bit SREN SREN bit -'0' CREN bit _____ RCIF bit (interrupt) i 1 Read RXREG Note: Timing diagram demonstrates SYNC master mode with bit SREN = '1' and bit BRG = '0'.

12.4 USART Synchronous Slave Mode

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Synchronous Slave Mode differs from Master Mode in the fact that the shift clock is supplied externally at the CK pin (instead of being supplied internally in the master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, enable bit SREN is a don't care in slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing enable bit CREN.

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h SPBRG Baud Rate Generator Register										0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	2000 -00x
1Ah	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	RG Baud Rate Generator Register								0000 0000	0000 0000

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

13.0 SPECIAL FEATURES OF THE CPU

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP mode
- Code protection
- ID locations
- · In-circuit serial programming

The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

13.1 Configuration Bits

 Applicable Devices

 61
 62
 62
 63
 64
 64
 864
 65
 65
 65

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 13-1: CONFIGURATION WORD FOR PIC16C61

 bit13	- -	-	—	-	_	_	-	CP0	PWRTE	WDTE	F0SC1	F0SC0 bit0	Register: Address	CONFIG 2007h
bit 13-5:	Unimplem	nented	Read	as '1'										
bit 4:	CP0 : Code 1 = Code 0 = All me	protecti	on off		d, but ()0h - 3F	h is writ	able						
bit 3:	PWRTE : F 1 = Power 0 = Power	-up Tim	ner enal	bled	e bit									
bit 2:	WDTE : Wa 1 = WDT e 0 = WDT e	enabled	Í	Enable	bit									
bit 1-0:	FOSC1:F(11 = RC o 10 = HS o 01 = XT o 00 = LP o	scillato scillato scillato	r r r	or Sele	ction bi	ts								

FIGURE 13-2: CONFIGURATION WORD FOR PIC16C62/64/65

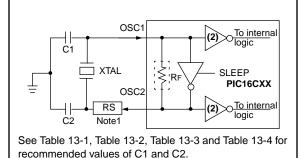
bit13		-	—	-	-	—	CP1	CP0	PWRTE	WDTE	F0SC1	F0SC0 bit0	Register: Address	CONFIG 2007h
bit 13-6:	Unimplen	nented	Read	as '1'										
bit 5-4:	11 = Code 10 = Uppe 01 = Uppe	CP1:CP0: Code Protection bits 11 = Code protection off 10 = Upper half of program memory code protected 11 = Upper 3/4th of program memory code protected 10 = All memory is code protected												
bit 3:	1 = Power	PWRTE: Power-up Timer Enable bit 1 = Power-up Timer enabled 0 = Power-up Timer disabled												
bit 2:	WDTE : Wa 1 = WDT e 0 = WDT e	enabled	Í	Enable	bit									
bit 1-0:	FOSC1:F0 11 = RC c 10 = HS c 01 = XT o 00 = LP o	oscillato oscillato oscillato	r r r	tor Sele	ction bi	ts								

FIGURE 13-3: CONFIGURATION WORD FOR PIC16C62A/R62/63/64A/R64/65A

	P0 CP1	CP0	CP1	CP0	—	BODEN	CP1	CP0	PWRTE	WDTE	F0SC1	F0SC0 bit0	Register: Address	CONFIG 2007h
bit13 bit 13-8: bit 5:4	13-8: CP1:CP0 : Code Protection bits ⁽²⁾													
bit 7:	Unimplen	nented	Read	as '1'										
bit 6:	BODEN : E 1 = Brown 0 = Brown	-out Re	eset ena	abled	le bit (*	1)								
bit 3:	PWRTE : Power-up Timer Enable bit ⁽¹⁾ 1 = Power-up Timer disabled 0 = Power-up Timer enabled													
bit 2:	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled													
bit 1-0:	FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator													
	Ensure the	e Powe	r-up Tin	ner is ei	nabled	anytime	Brown	-out Re	set is er	abled.			value of bit F	

13.2 Oscillator Configurations

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


13.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor
- 13.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

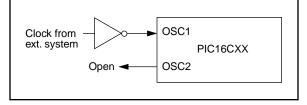

In LP, XT, or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 13-4). The PIC16CXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in LP, XT, or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 13-5).

FIGURE 13-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: For the PIC16C61 the buffer is on the OSC2 pin, all other devices have the buffer on the OSC1 pin.

FIGURE 13-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 13-1: CERAMIC RESONATORS PIC16C61

Ranges Tested:									
Mode	Freq	OSC1	OSC2						
XT	455 kHz	47 - 100 pF	47 - 100 pF						
	2.0 MHz	15 - 68 pF	15 - 68 pF						
	4.0 MHz	15 - 68 pF	15 - 68 pF						
HS	8.0 MHz	15 - 68 pF	15 - 68 pF						
	16.0 MHz	10 - 47 pF	10 - 47 pF						
Note : Recommended values of C1 and C2 are identical to the ranges tested table. Higher capacitance increases the stability of oscilla- tor but also increases the start-up time. These val- ues are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components. Resonators Used:									
455 kHz	455 kHz Panasonic EFO-A455K04B ± 0.3%								
2.0 MHz	0 MHz Murata Erie CSA2.00MG ± 0.5%								
4.0 MHz	Murata Erie CS	SA4.00MG	± 0.5%						
8.0 MHz	Murata Erie CS	SA8.00MT	± 0.5%						

16.0 MHzMurata Erie CSA16.00MX± 0.5%All resonators used did not have built-in capacitors.

TABLE 13-2:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR
FOR PIC16C61

Mode	Freq	OSC1	OSC2						
LP	32 kHz	33 - 68 pF	33 - 68 pF						
	200 kHz	15 - 47 pF	15 - 47 pF						
ХТ	100 kHz	47 - 100 pF	47 - 100 pF						
	500 kHz	20 - 68 pF	20 - 68 pF						
	1 MHz	15 - 68 pF	15 - 68 pF						
	2 MHz	15 - 47 pF	15 - 47 pF						
	4 MHz	15 - 33 pF	15 - 33 pF						
HS	8 MHz	15 - 47 pF	15 - 47 pF						
	20 MHz	15 - 47 pF	15 - 47 pF						
lat va rec ov tio									

TABLE 13-3: CERAMIC RESONATORS PIC16C62/62A/R62/63/64/64A/ R64/65/65A

Ranges Tested:									
Mode	Freq	OSC1	OSC2						
XT	455 kHz	68 - 100 pF	68 - 100 pF						
	2.0 MHz	15 - 68 pF	15 - 68 pF						
	4.0 MHz	15 - 68 pF	15 - 68 pF						
HS	8.0 MHz	10 - 68 pF	10 - 68 pF						
	16.0 MHz	10 - 22 pF	10 - 22 pF						
 Note: Recommended values of C1 and C2 are identical to the ranges tested table. Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components. 									
Resonators Used:									
455 kHz Panasonic EFO-A455K04B ± 0.3%									
2.0 MHz	Murata Erie	CSA2.00MG	± 0.5%						
4.0 MHz	Murata Erie	CSA4.00MG	± 0.5%						
8.0 MHz Murata Erie CSA8.00MT ± 0.5%									

TABLE 13-4: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR FOR PIC16C62/62A/R62/63/64/ 64A/R64/65/65A

All resonators used did not have built-in capacitors.

± 0.5%

16.0 MHz | Murata Erie CSA16.00MX

Mode	Freq	OSC1	OSC2
LP	32 kHz ⁽¹⁾	15 - 47 pF	15 - 47 pF
	200 kHz	15 - 33 pF	15 - 33 pF
XT	100 kHz	47 - 100 pF	47 - 100 pF
	500 kHz	20 - 68 pF	20 - 68 pF
	1 MHz	15 - 68 pF	15 - 68 pF
	2 MHz	15 - 47 pF	15 - 47 pF
	4 MHz	15 - 33 pF	15 - 33 pF
HS	8 MHz	15 - 47 pF	15 - 47 pF
	20 MHz	15 - 47 pF	15 - 47 pF

Note : Higher capacitance increases the stability of oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.
 Note 1: For VDD > 4.5V, C1 = C2 ≈ 30 pF is recom-

13.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 13-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 13-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

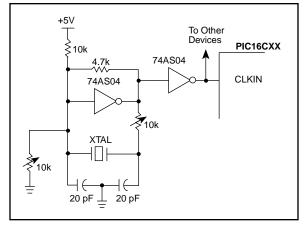
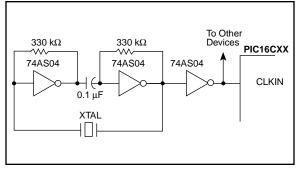
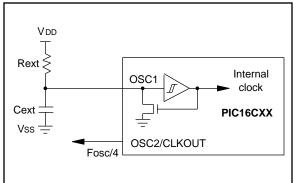



Figure 13-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 13-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

13.2.4 RC OSCILLATOR


For timing insensitive applications the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 13-8 shows how the RC combination is connected to the PIC16CXX. For Rext values below 2.2 kΩ, the oscillator operation may become unstable or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-4 for waveform).

FIGURE 13-8: RC OSCILLATOR MODE

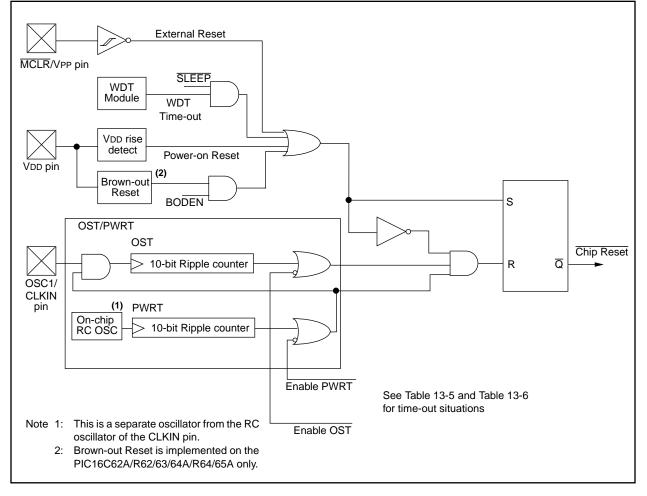
13.3 <u>Reset</u>

 Applicable Devices

 61
 62
 62
 R62
 63
 64
 64
 R64
 65
 65
 A

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) PIC16C62A/R62/63/ 64A/R64/65A


Some registers are not affected in any reset condition, their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on $\overline{\text{MCLR}}$ or $\overline{\text{WDT}}$ Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and on Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation.

The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 13-7, Table 13-8, and Table 13-9. These bits are used in software to determine the nature of the reset. See Table 13-12 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 13-9.

On the PIC16C62A/R62/63/64A/R64/65A, the MCLR reset path has a noise filter to detect and ignore small pulses. See parameter #34 for pulse width specifications.

It should be noted that a WDT Reset does not drive the $\overline{\text{MCLR}}$ pin low.

FIGURE 13-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

13.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), Oscillator Start-up</u> <u>Timer (OST) and Brown-out Reset</u> (BOR) Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

13.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}/\text{VPP}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

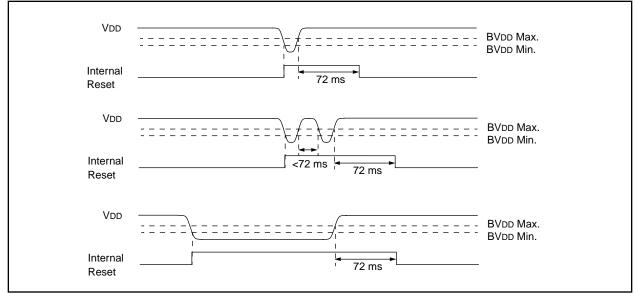
13.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

FIGURE 13-10: BROWN-OUT SITUATIONS

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

13.4.3 OSCILLATOR START-UP TIMER (OST)


The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

13.4.4 BROWN-OUT RESET (BOR)

Applicable Devices											
61	62	62A	R62	63	64	64A	R64	65	65A		

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (parameter D005 in Electrical Specification section) for greater than parameter #34, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #34. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 13-10 shows typical brown-out situations.

13.4.5 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First a PWRT time-out is invoked after the POR time delay has expired. Then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode, with the PWRT disabled, these will be no time-out at all. Figure 13-11, Figure 13-12, and Figure 13-13 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if the $\overline{\text{MCLR}}/\text{VPP}$ pin is kept low long enough, the time-outs will expire. Then bringing the $\overline{\text{MCLR}}/\text{VPP}$ pin high will begin execution immediately (Figure 13-14). This is useful for testing purposes or to synchronize more than one PIC16CXX device operating in parallel.

Table 13-10 and Table 13-11 show the reset conditions for some special function registers, while Table 13-12 shows the reset conditions for all the registers.

13.4.6 POWER CONTROL/STATUS REGISTER (PCON)

Ap	Applicable Devices										
61	62	62A	R62	63	64	64A	R64	65	65A		

The Power Control/Status Register, PCON has up to 2 bits, depending upon the device. Bit0 is not implemented on the PIC16C62/64/65.

Bit0 is BOR (Brown-out Reset Status bit). BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR cleared, indicating that a brown-out has occurred. The BOR status bit is a "Don't Care" and is not necessarily predictable if the Brown-out Reset circuitry is disabled (by clearing bit BODEN in the Configuration Word).

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 13-5: TIME-OUT IN VARIOUS SITUATIONS, PIC16C61/62/64/65

Oscillator Configuration	Power	Wake-up from SLEEP	
	PWRTE = 1	PWRTE = 0	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024 Tosc
RC	72 ms	—	—

TABLE 13-6: TIME-OUT IN VARIOUS SITUATIONS, PIC16C62A/R62/63/64A/R64/65A

Oscillator Configuration	Power	·up	Drawn aut	Wake up from		
	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP		
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024 Tosc		
RC	72 ms	_	72 ms	—		

TABLE 13-7: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C61

TO	PD	
1	1	Power-on Reset or MCLR reset during normal operation
0	1	WDT Reset
0	0	WDT Wake-up
1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

TABLE 13-8: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C62/64/65

POR	TO	PD	
0	1	1	Power-on Reset
0	0	х	Illegal, TO is set on a Power-on Reset
0	x	0	Illegal, PD is set on a Power-on Reset
1	0	1	WDT Reset
1	0	0	WDT Wake-up
1	1	1	MCLR reset during normal operation
1	1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

Legend: x = unknown, u = unchanged

POR	BOR	TO	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on a Power-on Reset
0	x	x	0	Illegal, PD is set on a Power-on Reset
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	1	1	MCLR reset during normal operation
1	1	1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

Legend: x = unknown, u = unchanged

TABLE 13-10: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C61/62/64/65

	Program Counter	STATUS	PCON ⁽²⁾
Power-on Reset	000h	0001 1xxx	0-
MCLR reset during normal operation	000h	000u uuuu	u-
MCLR reset during SLEEP	000h	0001 Ouuu	u-
WDT Reset	000h	0000 luuu	u-
WDT Wake-up	PC + 1	uuu0 Ouuu	u-
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

2: The PCON register is not implemented on the PIC16C61.

TABLE 13-11: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C62A/R62/63/64A/R64/65A

	Program Counter	STATUS	PCON
Power-on Reset	000h	0001 1xxx	0x
MCLR reset during normal operation	000h	000u uuuu	uu
MCLR reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
Brown-out Reset	000h	0001 luuu	u0
WDT Wake-up	PC + 1	uuu0 Ouuu	uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

Register				Appl	icab	le D	evice	6			Power-on Reset Brown-out Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset	Wake-up via interrupt or WDT Wake-up	
W	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	<u>uuuu</u> uuuu	uuuu uuuu	
INDF	61	62	62A	R62	63	64	64A	R64	65	65A	N/A	N/A	N/A	
TMR0	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PCL	61	62	62A	R62	63	64	64A	R64	65	65A	0000h	0000h	PC + 1 (2)	
STATUS	61	62	62A	R62	63	64	64A	R64	65	65A	0001 1xxx	000q quuu (3)	uuuq quuu (3)	
FSR	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	นนนน นนนน	uuuu uuuu	
	61	62	62A	R62	63	64	64A	R64	65	65A	x xxxx	u uuuu	u uuuu	
PORTA	61	62	62A	R62	63	64	64A	R64	65	65A	xx xxxx	uu uuuu	uu uuuu	
PORTB	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTC	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	<u>uuuu</u> uuuu	uuuu uuuu	
PORTD	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTE	61	62	62A	R62	63	64	64A	R64	65	65A	xxx	uuu	uuu	
PCLATH	61	62	62A	R62	63	64	64A	R64	65	65A	0 0000	0 0000	u uuuu	
INTCON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 000x	0000 000u	uuuu uuuu (1)	
PIR1	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu (1)	
	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu(1)	
PIR2	61	62	62A	R62	63	64	64A	R64	65	65A	0	0	u(2)	
TMR1L	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TMR1H	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
T1CON	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	uu uuuu	uu uuuu	
TMR2	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu	
T2CON	61	62	62A	R62	63	64	64A	R64	65	65A	-000 0000	-000 0000	-uuu uuuu	
SSPBUF	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
SSPCON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu	
CCPR1L	61	62	62A	R62	63	64	64A	R64	65	65A	хххх хххх	uuuu uuuu	uuuu uuuu	
CCPR1H	61	62	62A	R62	63	64	64A	R64	65	65A	хххх хххх	uuuu uuuu	uuuu uuuu	
CCP1CON	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu	
RCSTA	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -00x	0000 -00x	uuuu -uuu	
TXREG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu	
RCREG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu	
CCPR2L	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCPR2H	61	62	62A	R62	63	64	64A	R64	65	65A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCP2CON	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu	
OPTION	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu	
TRISA	61	62	62A	R62	63	64	64A	R64	65	65A	1 1111	1 1111	u uuuu	
	61	62	62A	R62	63	64	64A	R64	65	65A	11 1111	11 1111	uu uuuu	
TRISB	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu	

TABLE 13-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, -= unimplemented bit read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

3: See Table 13-10 and Table 13-11 for reset value for specific conditions.

Register	Applicable Devices										Power-on Reset Brown-out Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset	Wake-up via interrupt or WDT Wake-up
TRISC	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu
TRISD	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	uuuu uuuu
TRISE	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -111	0000 -111	uuuu -uuu
PIE1	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu
	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
PIE2	61	62	62A	R62	63	64	64A	R64	65	65A	0	0	u
PCON	61	62	62A	R62	63	64	64A	R64	65	65A	0u	uu	uu
FCON	61	62	62A	R62	63	64	64A	R64	65	65A	0-	u-	u-
PR2	61	62	62A	R62	63	64	64A	R64	65	65A	1111 1111	1111 1111	1111 1111
SSPADD	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	61	62	62A	R62	63	64	64A	R64	65	65A	00 0000	00 0000	uu uuuu
TXSTA	61	62	62A	R62	63	64	64A	R64	65	65A	0000 -010	0000 -010	uuuu -uuu
SPBRG	61	62	62A	R62	63	64	64A	R64	65	65A	0000 0000	0000 0000	uuuu uuuu

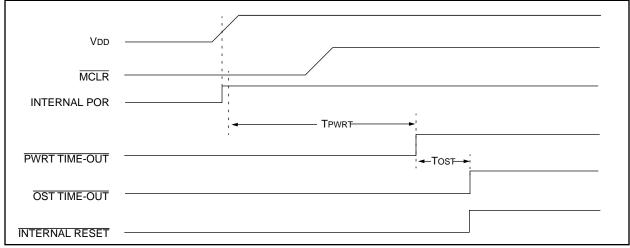
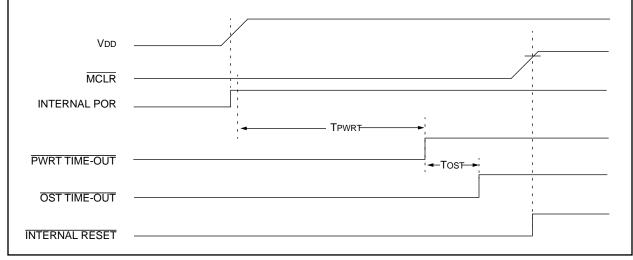
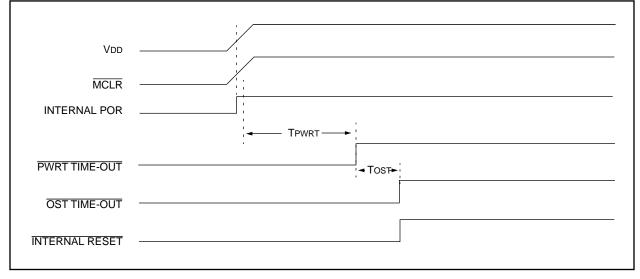
TABLE 13-12:	INITIALIZATION CONDITIONS FOR ALL REGISTERS	(Cont.'d)

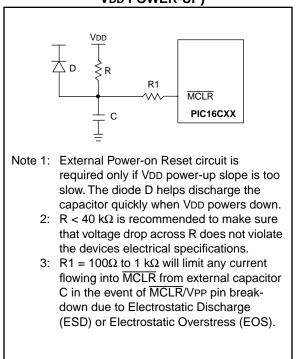
Legend: u = unchanged, x = unknown, -= unimplemented bit read as '0', q = value depends on condition.

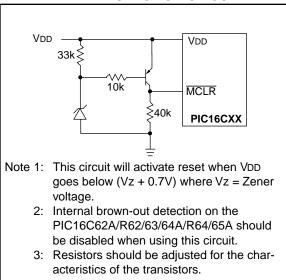
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

3: See Table 13-10 and Table 13-11 for reset value for specific conditions.


FIGURE 13-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2


FIGURE 13-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

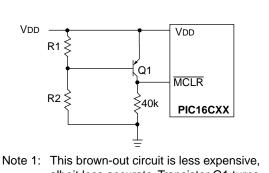

FIGURE 13-14: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

FIGURE 13-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 13-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

- 2: Internal brown-out detection on the PIC16C62A/R62/63/64A/R64/65A should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistors.

13.5 Interrupts

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

The PIC16C6X family has up to 11 sources of interrupt:

Interrupt Sources				Α	pplic	able	Device	es		
External interrupt RB0/INT	61	62	62A	R62	63	64	64A	R64	65	65A
TMR0 overflow interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
PORTB change interrupt (pins RB7:RB4)	61	62	62A	R62	63	64	64A	R64	65	65A
TMR1 overflow interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
TMR2 matches period interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
CCP1 interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
CCP2 interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
USART Receive	61	62	62A	R62	63	64	64A	R64	65	65A
USART Transmit	61	62	62A	R62	63	64	64A	R64	65	65A
Synchronous serial port interrupt	61	62	62A	R62	63	64	64A	R64	65	65A
Parallel slave port read/write interrupt	61	62	62A	R62	63	64	64A	R64	65	65A

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

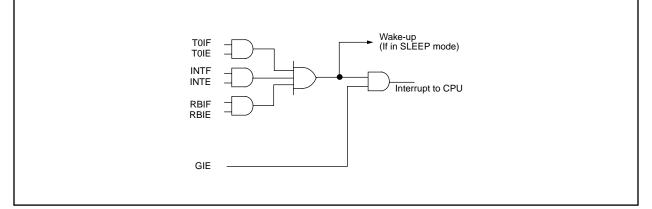
Note: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or global enable bit, GIE.

Global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) When bit GIE is enabled, and an interrupt flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register. GIE is cleared on reset.

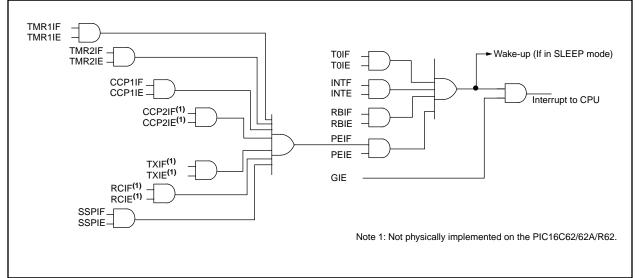
The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enable interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flag bits are contained in the INTCON register.

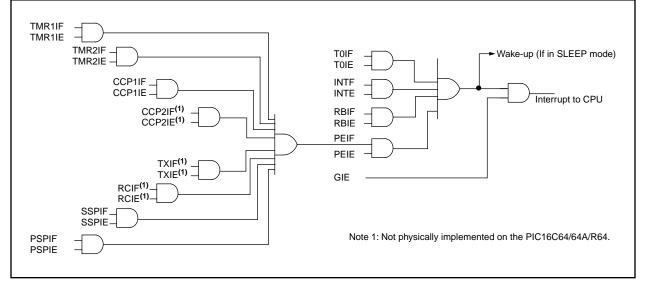
The peripheral interrupt flag bits are contained in special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2 and the peripheral interrupt enable bit is contained in special function register INTCON.

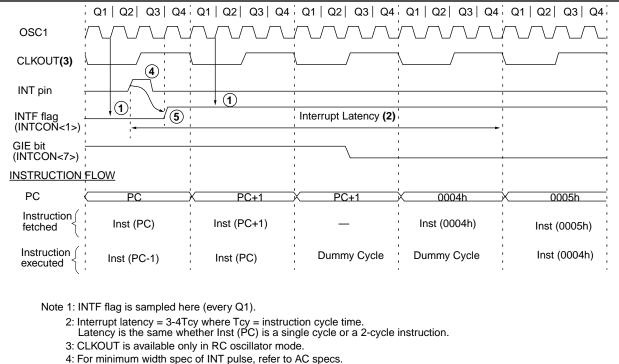

When an interrupt is responded to, bit GIE is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the RB0/INT pin or RB port change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 1320). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.


- **Note:** For the PIC16C61/64/65 only, If an interrupt occurs while the Global Interrupt Enable bit, GIE is being cleared, bit GIE may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:
 - 1. An instruction clears the GIE bit while an interrupt is acknowledged
 - 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
 - The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.
 - 4. Perform the following to ensure that interrupts are globally disabled.

LOOP BCF II	NTCON,GIE	;Disable Global
		;Interrupt bit
BTFSC	INTCON,GIE	;Global Interrupt
		;Disabled?
GOTO	LOOP	;NO, try again
:		;Yes, continue
		;with program flow
	LOOP	;NO, try again ;Yes, continue


FIGURE 13-17: INTERRUPT LOGIC FOR PIC16C61


13.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if edge select bit INTEDG (OPTION<6>) is set, or falling, if bit INTEDG is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP, if enable bit INTE was set prior to going into SLEEP. The status of global enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 13.8 for details on SLEEP mode.

13.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 7.0).

FIGURE 13-20: INT PIN INTERRUPT TIMING

5: INTF can to be set anytime during the Q4-Q1 cycles.

13.5.3 PORTB INTERRUPT ON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 5.2).

Note: For the PIC16C61/62/64/65 only, if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then flag bit RBIF may not get set.

13.6 Context Saving During Interrupts

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 13-1 and Example 13-2 store and restore the STATUS and W registers. For all PIC16C6X devices with greater than 1K of program memory (all devices except PIC16C61), the register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The examples:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes ISR code.
- d) Restores STATUS register (and bank select bit).
- e) Restores W register.

EXAMPLE 13-1: SAVING STATUS AND W REGISTERS IN RAM (PIC16C61)

MOVWF SWAPF MOVWF : :(ISR)	W_TEMP STATUS,W STATUS_TEMP	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;Save status to bank zero STATUS_TEMP register
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

EXAMPLE 13-2: SAVING STATUS AND W REGISTERS IN RAM (PIC16C62/62A/R62/63/64/64A/R64/ 65/65A)

MOVWF SWAPF BCF MOVWF : :(ISR)	W_TEMP STATUS,W STATUS,RPO STATUS_TEMP	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;Change to bank zero, regardless of current bank ;Save status to bank zero STATUS_TEMP register
: SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
MOVWF SWAPF SWAPF	STATUS W_TEMP,F W_TEMP,W	;(sets bank to original state) ;Move W into STATUS register ;Swap W_TEMP ;Swap W_TEMP into W

13.7 Watchdog Timer (WDT)

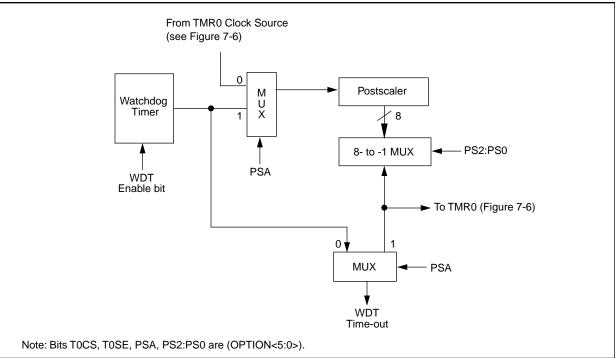
Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/ CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device reset. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (WDT Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 13.1).

13.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see

FIGURE 13-21: WATCHDOG TIMER BLOCK DIAGRAM


DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a WDT time-out.

13.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

FIGURE 13-22: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 13-1, Figure 13-2, and Figure 13-3 for details of these bits for the specific device.

13.8 Power-down Mode (SLEEP)

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, status bit \overline{PD} (STATUS<3>) is cleared, status bit \overline{TO} (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, and disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC).

13.8.1 WAKE-UP FROM SLEEP

The device can wake from SLEEP through one of the following events:

- 1. External reset input on MCLR/VPP pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or some Peripheral Interrupts.

External MCLR Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits

in the STATUS register can be used to determine the cause of device reset. The \overline{PD} bit, which is set on power-up is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/l²C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. USART TX or RX (synchronous slave mode).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes-up from sleep, regardless of the source of wake-up.

FIGURE 13-23: WAKE-UP FROM SLEEP THROUGH INTERRUPT

1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1	, , , ,	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	
OSC1				MMM					
CLKOUT(4)				Tost(2)			·\/		
INT pin				· ·	1	1	I I		
INTF flag (INTCON<1>)			\	· · · · · · · · · · · · · · · · · · ·		Interrupt Latency (Note 2)			
GIE bit (INTCON<7>)			Processor in SLEEP		, , , ,				
INSTRUCTION	FLOW				1				
PC)	(PC	PC+1	X PC+	-2	PC+2	PC + 2	√ <u>0004h</u>	0005h	
Instruction	Inst(PC) = SLEEP	Inst(PC + 1)		1 1	Inst(PC + 2)	1	Inst(0004h)	Inst(0005h)	
Instruction {	Inst(PC - 1)	SLEEP		1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)	
Noto 1: XT k	IS or I D oscillator	modo ossumod							

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

- 3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine.
- If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

Note: Interrupts that are capable of waking the device from SLEEP will still set the individual flag bits regardless of the state of the global enable bit, GIE.

13.9 Program Verification/Code Protection

Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

13.10 ID Locations

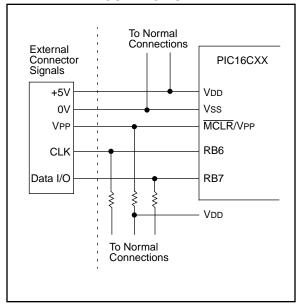
Applicable Devices

61 62 62A R62 63 64 64A R64 65 65A

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of ID location are used.

For ROM devices, these values are submitted along with the ROM code.

13.11 In-Circuit Serial Programming


Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

The PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding pins RB6 and RB7 low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device in program/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 13-24: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

14.0 INSTRUCTION SET SUMMARY

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 14-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 14-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

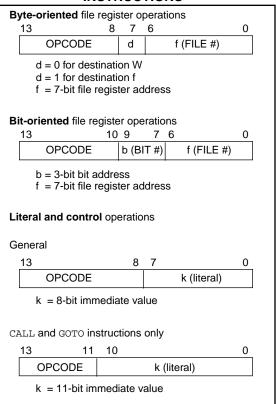
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 14-2 lists the instructions recognized by the MPASM assembler.

Figure 14-1 shows the three general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles	14-Bit Opcode				Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS	·						
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							•
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
						0110			
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SLEEP SUBLW	- k	Subtract W from literal	1	11	0000 110x	0110 kkkk		C,DC,Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

0x03

W =

14.1 Instruction Descriptions

ADDLW Add Literal and W						
Syntax:	[<i>label</i>] ADDLW k					
Operands:	$0 \le k \le 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Encoding:	11 111x kkkk kkkk					
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	ADDLW 0x15					
	Before Instruction W = 0x10 After Instruction W = 0x25					

ANDLW	AND Literal with W						
Syntax:	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W) .AND. (k) \rightarrow (W)						
Status Affected: Z							
Encoding:	11 1001 kkkk kkkk						
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.						
Words:	1						
Cycles:	1						
Example	ANDLW 0x5F						
	Before Instruction W = 0xA3 After Instruction						

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	$(W) + (f) \to (dest)$					
Status Affected:	C, DC, Z					
Encoding:	00 0111 dfff ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ADDWF FSR, 0					
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2					

ANDWF	AND W with f						
Syntax:	[label] ANDWF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(W) .AND. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00	0101	dfff	ffff			
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	ANDWF	FSR,	1				
	F After Instr V	N = SR =	0x17 0xC2 0x17 0x02				

BCF	Bit Clear	f				
Syntax:	[<i>label</i>] BCF f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$0 \rightarrow (f < b >)$					
Status Affected:	None					
Encoding:	01	00bb	bfff	ffff		
Description:	Bit 'b' in re	gister 'f' is	s cleared.			
Words:	1					
Cycles:	1					
Example	BCF	FLAG_	REG, 7			
	Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47					

BTFSC	Bit Test, Skip if Clear			
Syntax:	[<i>label</i>] BTFSC f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	skip if (f) = 0			
Status Affected:	None			
Encoding:	01	10bb	bfff	ffff
Description:	instruction If bit 'b' is ' fetched du execution	register 'f' is is skipped. 0' then the iring the cur is discarded nstead, main.	next instru rent instru d, and a No	iction iction OP is
Words:	1			
Cycles:	1(2)			
Example	HERE FALSE TRUE		FLAG,1 PROCESS_	_CODE
	Before In	struction		
	After Inst	ruction if FLAG<1> PC = a if FLAG<1>	= 0, address T	

BSF	Bit Set f			
Syntax:	[<i>label</i>] BSF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in register 'f' is set.			
Words:	1			
Cycles:	1			
Example	BSF	FLAG_F	REG, 7	
	After Inst	FLAG_RE	EG = 0x0A EG = 0x8A	

BTFSS	Bit Test f, Skip if Set		
Syntax:	[<i>label</i>] BTFSS f,b		
Operands:	$0 \le f \le 127$ $0 \le b < 7$		
Operation:	skip if (f) = 1		
Status Affected:	None		
Encoding:	01 11bb bfff ffff		
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.		
Words:	1		
Cycles:	1(2)		
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •		
	Before Instruction		
	$\begin{array}{rcl} PC &=& address & \mbox{HERE} \\ \mbox{After Instruction} \\ & \mbox{if FLAG<1>= 0,} \\ PC &=& address & \mbox{FALSE} \\ & \mbox{if FLAG<1>= 1,} \\ PC &=& address & \mbox{TRUE} \\ \end{array}$		

CLRF	Clear f				
Syntax:	[<i>label</i>] CLRF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	00 0	0001	1ff	f	ffff
Description:	The contents and the Z bit	•	ster '	f' are	cleared
Words:	1				
Cycles:	1				
Example	CLRF	FLAG	_REC	3	
	After Instru	AG_RE	G	=	0x5A 0x00 1

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Encoding:	10 0kkk kkkk kkkk
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.
Words:	1
Cycles:	2
Example	HERE CALL THERE
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	00 0001 0xxx xxxx
Description:	W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example	CLRW
	Before Instruction
	W = 0x5A
	After Instruction
	W = 0x00
	Z = 1

CLRWDT	Clear Wa	tchdog	Timer	
Syntax:	[label] CLRWDT			
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$			
Status Affected:	TO, PD			
Encoding:	00	0000	0110	0100
Description:	CLRWDT in dog Timer. of the WD are set.	It also re	sets the pi	rescaler
Words:	1			
Cycles:	1			
Example	CLRWDT			
	Before In	struction WDT cou		?
	After Inst			000
		WDT cou WDT pres		0x00 0
		TO	=	1
		PD	=	1

DECF	Decreme	ent f			
Syntax:	[<i>label</i>] D	ECF f,d			
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]				
Operation:	(f) - 1 \rightarrow	(dest)			
Status Affected:	Z				
Encoding:	00	0011	df	ff	ffff
Description:	Decremen result is st is 1 the res 'f'.	t register ored in th sult is stor	'f'. If e W ed ba	'd' is (registe ack in) the er. If 'd' register
Words:	1				
Cycles:	1				
Example	DECF	CNT,	1		
	After Inst	CNT Z	= = =	0x01 0 0x00 1	

COMF	Compler	nent f		
Syntax:	[label]	COMF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7		
Operation:	$(\bar{\mathrm{f}}) ightarrow (\mathrm{des})$	st)		
Status Affected:	Z			
Encoding:	00	1001	dfff	ffff
Description:	The contermented. If W. If 'd' is register 'f'.	'd' is 0 the 1 the resu	e result is	storeḋ in
Words:	1			
Cycles:	1			
Example	COMF	REG	G1,0	
	After Inst	REG1	= 0x1 = 0x1	-
		W	= 0xE	C

DECFSZ	Decrement f, Skip if 0		
Syntax:	[label] DECFSZ f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$		
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0		
Status Affected:	None		
Encoding:	00 1011 dfff ffff		
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.		
Words:	1		
Cycles:	1(2)		
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •		
	$\begin{array}{rcl} Before \ Instruction \\ PC & = & address \ {\mbox{\tiny HERE}} \\ After \ Instruction \\ CNT & = & CNT - 1 \\ if \ CNT & = & 0, \\ PC & = & address \ CONTINUE \\ if \ CNT \neq & 0, \\ PC & = & address \ {\mbox{\tiny HERE}+1} \\ \end{array}$		

GOTO	Unconditional Branch	INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] GOTO k	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$0 \le k \le 2047$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow PC < 10:0 >$		d ∈ [0,1]
	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None	Status Affected:	None
Encoding:	10 1kkk kkkk kkkk	Encoding:	00 1111 dfff ffff
Description: Words:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.
Cycles:	2	Words:	1
Example	GOTO THERE	Cycles:	1(2)
	After Instruction PC = Address THERE	Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •
			Before Instruction PC = address HERE

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 1010 dfff ffff
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	INCF CNT, 1
	$\begin{array}{rrrr} \text{Before Instruction} \\ & \text{CNT} & = & 0 \text{xFF} \\ & Z & = & 0 \end{array}$ $\begin{array}{rrrr} \text{After Instruction} \\ & \text{CNT} & = & 0 \text{x00} \\ & Z & = & 1 \end{array}$

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	IORLW 0x35
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1

After Instruction

if CNT=

PC =

if CNT≠

CNT = CNT + 1

0,

0, PC = address HERE +1

address CONTINUE

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0100 dfff ffff
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	IORWF RESULT, 0
	Before Instruction $\begin{array}{rcl} RESULT &=& 0x13\\ W &=& 0x91\\ \end{array}$ After Instruction
	RESULT = 0x13 W = 0x93 Z = 1

MOVLW	Move Lit	eral to V	v	
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 2$	55		
Operation:	$k \to (W)$			
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight register. Tl as 0's.			
Words:	1			
Cycles:	1			
Example	MOVLW	0x5A		
	After Inst	ruction W =	0x5A	

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1000 dfff ffff
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example	MOVWF OPTION
	$\begin{array}{rcl} \text{Before Instruction} & & \\ & \text{OPTION} & = & 0xFF \\ W & = & 0x4F \\ \text{After Instruction} & & \\ & \text{OPTION} & = & 0x4F \\ W & = & 0x4F \end{array}$

NOP	No Operation				
Syntax:	[label] NOP				
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	00	0000	0xx0	0000	
Description:	No operat	ion.			
Words:	1				
Cycles:	1				
Example	NOP				

RETFIE	Return fr	om Inte	rrupt		
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$TOS \rightarrow PC,$ 1 $\rightarrow GIE$				
Status Affected:	None				
Encoding:	00 0000 0000 1001				
Description:	Return from and Top of the PC. Int ting Globa (INTCON< instruction	Stack (T errupts a I Interrup 7>). This	OS) is load re enabled t Enable bi	led in by set- t, GIE	
Words:	1				
Cycles:	2				
Example	RETFIE				
		rrupt PC = GIE =	TOS 1		

[lahal]			
[label]	OPTION	١	
None			
$(W) \rightarrow OPTION$			
None			
00	0000	0110	0010
The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.			
1			
To maintain upward compatibility with future PIC16CXX products, do not use this instruction.			
	None $(W) \rightarrow OI$ None 00 The conter oaded in t nstruction patibility w Since OPT register, th t. 1 To mainta with futu	None $(W) \rightarrow OPTION$ None 00 0000 The contents of the oaded in the OPTIC nstruction is support patibility with PIC16 Since OPTION is a register, the user can t. 1 To maintain upwa with future PIC166	None $(W) \rightarrow OPTION$ None 00 0000 0110 The contents of the W register oaded in the OPTION register nstruction is supported for cor- patibility with PIC16C5X produ- Since OPTION is a readable/w register, the user can directly a t. 1 To maintain upward compar- with future PIC16CXX produ-

RETLW	Return with Literal in W
Syntax:	[<i>label</i>] RETLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$
Status Affected:	None
Encoding:	11 01xx kkkk kkkk
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.
Words:	1
Cycles:	2
Example	CALL TABLE ;W contains table ;offset value . ;W now has table value
TABLE	ADDWF PC ;W = offset RETLW kl ;Begin table RETLW k2 ; • • RETLW kn ; End of table
	Before Instruction
	W = 0x07 After Instruction
	W = value of k8

RETURN	Return fi	rom Sub	oroutine	
Syntax:	[label]	RETUR	N	
Operands:	None			
Operation:	$TOS \to PC$			
Status Affected:	None			
Encoding:	00	0000	0000	1000
Description:	Return fro POPed an is loaded i This is a ty	d the top nto the pr	of the stac	k (TOS) inter.
Words:	1			
Cycles:	2			
Example	RETURN			
	After Inte	errupt PC =	TOS	

RRF	Rotate Rig	ght f th	roug	gh Ca	rry
Syntax:	[label] F	RRF f,	d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$				
Operation:	See descri	ption b	elow	,	
Status Affected:	С				
Encoding:	00	1100	dfi	Ef	ffff
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.				
Words:	1				
	•				
Cycles:	1				
Example	RRF		REG1	,0	
	Before Inst	truction EG1		1110	0110
	C	EGI	=	0	0110
	After Instru	uction			
		EG1	=	1110	0110
	W C	1	= =	0111 0	0011

0011

RLF	Rotate Left f through Carry	SLEEP	
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[label] SLEEP
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	None
Operation: Status Affected:	See description below C	Operation:	00h → WDT, 0 → WDT prescaler, 1 → \overline{TO} ,
Encoding: Description:	00 1101 dfff ffff The contents of register 'f' are rotated	Status Affected:	$0 \rightarrow \overline{PD}$ TO, PD
•	one bit to the left through the Carry	Encoding:	00 0000 0110 0011
Words:	Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'. C - Register f 1 1	Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 13.8 for more details.
Cycles:		Words:	1
Example	RLF REG1,0 Before Instruction	Cycles:	1
	$\begin{array}{rcl} \text{REG1} & = & 1110 & 0110 \\ \text{C} & = & 0 \\ \text{After Instruction} \\ \text{REG1} & = & 1110 & 0110 \\ \text{W} & = & 1100 & 1100 \\ \text{C} & = & 1 \\ \end{array}$	Example:	SLEEP

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f	
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d	
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$	
Operation:	$k \text{ - } (W) \to (W)$		d ∈ [0,1]	
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)	
Affected:		Status	C, DC, Z	
Encoding:	11 110x kkkk kkkk	Affected:	00 0010 3555 5555	
Description:	The W register is subtracted (2's com- plement method) from the eight bit literal 'k'. The result is placed in the W register.	Encoding: Description:	00 0010 dfff ffff Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is	
Words:	1		stored in the W register. If 'd' is 1 the result is stored back in register 'f'.	
Cycles:	1	Words:	1	
Example 1:	SUBLW 0x02	Cycles:	1	
	Before Instruction	Example 1:	SUBWF REG1,1	
	W = 1 C = ?		Before Instruction	
	After Instruction		REG1 = 3	
	W = 1		W = 2 C = ?	
	C = 1; result is positive		After Instruction	
Example 2:	Before Instruction		REG1 = 1	
	W = 2 C = ?		W = 2 C = 1: result is positive	
	After Instruction	Example 2:	C = 1; result is positive Before Instruction	
	W = 0	Example 2.	REG1 = 2	
	C = 1; result is zero		W = 2	
Example 3:	Before Instruction		C = ?	
	W = 3		After Instruction	
	C = ?		REG1 = 0 W = 2	
	After Instruction		C = 1; result is zero	
	W = 0xFF C = 0; result is nega-	Example 3:	Before Instruction	
	tive		REG1 = 1	
			W = 2 $C = ?$	
			After Instruction	
			REG1 = 0xFF	
			W = 2	
			C = 0; result is negative	

SWAPF	Swap Ni	ibbles in	f				XORLW	Exe
Syntax:	[label]	SWAPF	f,d			•	Syntax:	[lab
Operands:	0 ≤ f ≤ 12 d ∈ [0,1]						Operands:	0 ≤
Operation:		ightarrow (dest< $ ightarrow$ (dest<					Operation: Status Affected:	(W) Z
Status Affected:	None						Encoding:	
Encoding:	00	1110	df	ff	ffff]	Description:	The XO
Description:	ter 'f' are e	r and lowe	d. If 'd	' is 0	the	1		The ter.
		laced in W is placed	•				Words:	1
Words:	1	·	Ū				Cycles:	1
Cycles:	1						Example:	XOI
Example	SWAPF	REG,	0					Bet
	Before Ir	nstruction	ı					
		REG1	=	0xA	.5			Aft
	After Inst	truction						
		REG1 W	= =	0xA 0x5	-			

ORLW	Exclusive OR Literal with W				
yntax:	[label]	XORLV	Vk		
perands:	$0 \le k \le 2$	55			
peration:	(W) .XO	$R.k\to(V)$	V)		
atus Affected:	Z				
ncoding:	11	1010	kkkk	kkkk	
escription:	The conte XOR'ed w The result ter.	vith the eig	ght bit lite	ral 'k'.	
ords:	1				
ycles:	1				
xample:	XORLW	0xAF			
	Before Ir	nstructior	า		
		W =	0xB5		
	After Ins	truction			
		W =	0x1A		

TRIS	Load TRIS Register				
Syntax:	[label]	TRIS	f		
Operands:	$5 \leq f \leq 7$				
Operation:	$(W) \rightarrow TF$	RIS regis	ster f;		
Status Affected:	None				
Encoding:	00	0000	0110	Offf	
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.				
Words:	1				
Cycles:	1				
Example	Example				
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.				

XORWF	Exclusive OR W with f					
Syntax:	[label]	XORWF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00	0110	dff	E	ffff	
Description: Words:	register w result is s	OR the co ith register tored in the sult is store	r 'f'. If ' e W re	d' is giste	0 the er. If 'd'	
Cycles:	1					
Example	XORWF	REG	1			
	Before Instruction					
		REG W	= =	0xA 0xE		
	After Inst	truction				
		REG W	= =	0x1 0xE		

15.0 DEVELOPMENT SUPPORT

15.1 Development Tools

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER[®] Real-Time In-Circuit Emulator
- PRO MATE™ Universal Programmer
- PICSTART[®] Low-Cost Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- MPASM Assembler
- MPSIM Software Simulator
- C Compiler (MP-C)
- Fuzzy logic development system (*fuzzy*TECH[®]–MP)

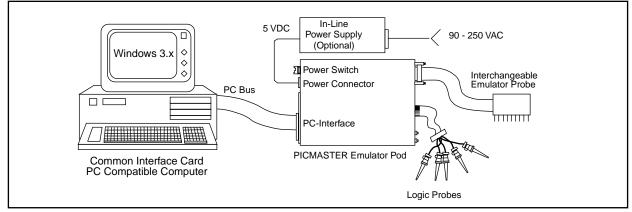
15.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC16C5X, PIC16CXX and PIC17CXX families. PICMASTER is supplied with the MPLAB[™] Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment. A PICMASTER System configuration is shown in Figure 15-1.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new PIC16C5X, PIC16CXX and PIC17CXX microcontrollers. The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and better) machine platform and Microsoft Windows[™] 3.x environment were chosen to best make these features available to you, the end user.

The PICMASTER Universal Emulator System consists primarily of four major components:

- Host-Interface Card
- Emulator Control Pod
- Target-Specific Emulator Probe
- PC-Host Emulation Control Software


The Windows operating system allows the developer to take full advantage of the many powerful features and functions of the PICMASTER system.

PICMASTER emulation can operate in one window, while a text editor is running in a second window.

PC-Host Emulation Control software takes full advantage of Dynamic Data Exchange (DDE), a feature of Windows. DDE allows data to be dynamically transferred between two or more Windows programs. With this feature, data collected with PICMASTER can be automatically transferred to a spreadsheet or database program for further analysis.

Under Windows, as many as four PICMASTER emulators can be run simultaneously from the same PC making development of multi-microcontroller systems possible (e.g., a system containing a PIC16CXX microcontroller and a PIC17CXX microcontroller).

The PICMASTER probes specifications are shown in Table 15-1.

FIGURE 15-1: PICMASTER SYSTEM CONFIGURATION

TABLE 15-1:PICMASTER PROBESPECIFICATION

	DICMASTED	PROBE			
Devices	PICMASTER PROBE	Maximum Frequency	Operating Voltage		
PIC16C54	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16C54A	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16CR54	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16CR54A	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V		
PIC16CR54B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V		
PIC16C55	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16CR55	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V		
PIC16C56	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16CR56	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V		
PIC16C57	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16CR57A	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16CR57B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V		
PIC16C58A	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16CR58A	PROBE-16D	20 MHz	4.5V - 5.5V		
PIC16CR58B	PROBE-16D ⁽¹⁾	20 MHz	4.5V - 5.5V		
PIC16C61	PROBE-16G	10 MHz	4.5V - 5.5V		
PIC16C62	PROBE-16E	10 MHz	4.5V - 5.5V		
PIC16C62A	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16CR62	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C63	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C64	PROBE-16E	10 MHz	4.5V - 5.5V		
PIC16C64A	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V		

TABLE 15-1:PICMASTER PROBE
SPECIFICATION CONT.)

r	i		-		
	PICMASTER	PROBE			
Devices	PROBE	Maximum Frequency	Operating Voltage		
PIC16CR64	PROBE-16E ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C65	PROBE-16F	10 MHz	4.5V - 5.5V		
PIC16C65A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C620	PROBE-16H	10 MHz	4.5V - 5.5V		
PIC16C621	PROBE-16H	10 MHz	4.5V - 5.5V		
PIC16C622	PROBE-16H	10 MHz	4.5V - 5.5V		
PIC16C70	PROBE-16B ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C71	PROBE-16B	10 MHz	4.5V - 5.5V		
PIC16C71A	PROBE-16B ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C72	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C73	PROBE-16F	10 MHz	4.5V - 5.5V		
PIC16C73A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C74	PROBE-16F	10 MHz	4.5V - 5.5V		
PIC16C74A	PROBE-16F ⁽¹⁾	10 MHz	4.5V - 5.5V		
PIC16C83	PROBE-16C	10 MHz	4.5V - 5.5V		
PIC16C84	PROBE-16C	10 MHz	4.5V - 5.5V		
PIC17C42	PROBE-17B	20 MHz	4.5V - 5.5V		
PIC17C43	PROBE-17B	20 MHz	4.5V - 5.5V		
PIC17C44	PROBE-17B	20 MHz	4.5V - 5.5V		

Note 1: This PICMASTER probe can be used to functionally emulate the device listed in the previous column. Contact your Microchip sales office for details.

15.3 PRO MATE: Universal Programmer

The PRO MATE Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE can read, verify or program PIC16C5X, PIC16CXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

In PC-hosted mode, the PRO MATE connects to the PC via one of the COM (RS-232) ports. PC based userinterface software makes using the programmer simple and efficient. The user interface is full-screen and menu-based. Full screen display and editing of data, easy selection of bit configuration and part type, easy selection of VDD min, VDD max and VPP levels, load and store to and from disk files (Intel[®] hex format) are some of the features of the software. Essential commands such as read, verify, program and blank check can be issued from the screen. Additionally, serial programming support is possible where each part is programmed with a different serial number, sequential or random.

The PRO MATE has a modular "programming socket module". Different socket modules are required for different processor types and/or package types.

PRO MATE supports all PIC16C5X, PIC16CXX and PIC17CXX processors.

15.4 <u>PICSTART Low-Cost Development</u> <u>System</u>

The PICSTART programmer is an easy-to-use, very low-cost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. PC-based user interface software makes using the programmer simple and efficient. The user interface is full-screen and menu-based. PICSTART is not recommended for production programming.

15.5 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

15.6 <u>PICDEM-2 Low-Cost PIC16CXX</u> <u>Demonstration Board</u>

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

15.7 <u>MPLAB Integrated Development</u> <u>Environment Software.</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- · Customizable tool bar and key mapping
- A status bar with project information
- · Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or "C")
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

15.8 Assembler (MPASM)

The MPASM Cross Assembler is a PC-hosted symbolic assembler. It supports all microcontroller series including the PIC16C5X, PIC16CXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

MPASM allows full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- · Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

- Data Directives are those that control the allocation of memory and provide a way to refer to data items symbolically, i.e., by meaningful names.
- **Control Directives** control the MPASM listing display. They allow the specification of titles and subtitles, page ejects and other listing control. This eases the readability of the printed output file.
- **Conditional Directives** permit sections of conditionally assembled code. This is most useful where additional functionality may wished to be added depending on the product (less functionality for the low end product, then for the high end product). Also this is very helpful in the debugging of a program.
- Macro Directives control the execution and data allocation within macro body definitions. This makes very simple the re-use of functions in a program as well as between programs.

15.9 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode. MPLAB-SIM fully supports symbolic debugging using MP-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

15.10 <u>C Compiler (MP-C)</u>

The MP-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the PICMASTER Universal Emulator memory display (PICMASTER emulator software versions 1.13 and later).

The MP-C Code Development System is supplied directly by Byte Craft Limited of Waterloo, Ontario, Canada. If you have any questions, please contact your regional Microchip FAE or Microchip technical support personnel at (602) 786-7627.

15.11 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

15.12 Development Systems

For convenience, the development tools are packaged into comprehensive systems as listed in Table 15-2.

Item	Name	System Description
1.	PICMASTER System	PICMASTER In-Circuit Emulator, PRO MATE Programmer, Assembler, Software Simulator, Samples and your choice of Target Probe.
2.	PICSTART System	PICSTART Low-Cost Prototype Programmer, Assembler, Software Simulator and Samples.
3.	PRO MATE System	PRO MATE Universal Programmer, full featured stand-alone or PC-hosted pro- grammer, Assembler, Simulator

TABLE 15-2: DEVELOPMENT SYSTEM PACKAGES

NOTES:

16.0 ELECTRICAL CHARACTERISTICS FOR PIC16C61

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	800 mW
Maximum current out of Vss pin	150 mA
Maximum current into VDD pin	100 mA
Input clamp current, liк (Vi < 0 or Vi > VDD)	
Output clamp current, loк (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	150 mA
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-V	'OH) x IOH} + Σ (VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 16-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC16C61-04	PIC16C61-20	PIC16LC61-04	JW Devices
RC	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 3.3 mA max. at 5.5V	IDD: 1.8 mA typ. at 5.5V	IDD: 1.4 mA typ. at 3.0V	IDD: 3.3 mA max. at 5.5V
	IPD: 14 μA max. at 4V	IPD: 1.0 μA typ. at 4V	IPD: 0.6 μA typ. at 3V	IPD: 14 μA max. at 4V
	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.
ХТ	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 3.3 mA max. at 5.5V	IDD: 1.8 mA typ. at 5.5V	IDD: 1.4 mA typ. at 3.0V	IDD: 3.3 mA max. at 5.5V
	IPD: 14 μA max. at 4V	IPD: 1.0 μA typ. at 4V	IPD: 0.6 μA typ. at 3V	IPD: 14 μA max. at 4V
	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V		VDD: 4.5V to 5.5V
	IDD: 13.5 mA typ. at 5.5V	IDD: 30 mA max. at 5.5V	Do not use in HS mode	IDD: 30 mA max. at 5.5V
	IPD: 1.0 μA typ. at 4.5V	IPD: 1.0 μA typ. at 4.5V	Do not use in HS mode	IPD: 1.0 μA typ. at 4.5V
	Freq: 4 MHz max.	Freq: 20 MHz max.		Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V		VDD: 3.0V to 6.0V	VDD: 3.0V to 6.0V
	IDD: 15 μA typ. at 32 kHz,		IDD: 32 μA max. at 32 kHz,	IDD: 32 μA max. at 32 kHz,
	4.0V	Do not use in LP mode	3.0V	3.0V
	IPD: 0.6 μA typ. at 4.0V		IPD: 9 μA max. at 3.0V	IPD: 9 μA max. at 3.0V
	Freq: 200 kHz max.		Freq: 200 kHz max.	Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

^{© 1996} Microchip Technology Inc.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

16.1 DC Characteristics:

PIC16C61-04 (Commercial, Industrial, Automotive) PIC16C61-20 (Commercial, Industrial, Automotive)

		Standa	rd Opei	ating	Condi	tions (I	unless otherwise stated)			
	RACTERISTICS	Operating temperature -40° C \leq TA \leq +125 $^{\circ}$ C for automotive,								
	KACTERISTICS	-40°C \leq TA \leq +85°C for industrial and								
					0°0	ວ ≤	\leq TA \leq +70°C for commercial			
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions			
D001	Supply Voltage	Vdd	4.0	-	6.0	V	XT, RC and LP osc configuration			
D001A			4.5	-	5.5	V	HS osc configuration			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode			
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	13.5	30	mA	HS osc configuration (PIC16C61-20) Fosc = 20 MHz, VDD = 5.5V			
D020	Power-down Current	IPD	-	7	28	μA	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D021	(Note 3)		-	1.0	14	μΑ	VDD = $4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$			
D021A			-	1.0	16	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021B			-	1.0	20	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

16.2 DC Characteristics: PIC16LC61-04 (Commercial, Industrial, Automotive)

DC CHARACTERISTICS Operating temperature							onditions (unless otherwise stated) $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ for automotive, $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercial				
Param No.	Characteristic	Sym	Min	Тур†	Max		Conditions				
D001	Supply Voltage	Vdd	3.0	-	6.0	V	XT, RC, and LP osc configuration				
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode				
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details				
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details				
D010	Supply Current (Note 2)	IDD	-	1.4	2.5	mA	FOSC = 4 MHz, VDD = 3.0V (Note 4)				
D010A			-	15	32	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc configuration				
D020	Power-down Current	IPD	-	5	20	μA	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$				
D021	(Note 3)		-	0.6	9	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C				
D021A			-	0.6	12	μA	VDD = 3.0V, WDT disabled, -40°C to +85°C				
D021B			-	0.6	16	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applic	able Devices 61 62 62A R62 6	3 64 6	4A R64	65 65	5A					
16.3		PIC16C PIC16L	61-20(C61-04(Com Com	mercia mercia	ıl, Indu al, Indu	ustrial, Automotive) ustrial, Automotive) ustrial, Automotive)			
DC CH/	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ for automotive, $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial and $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercialOperating voltage VDD range as described in DC spec Section 16.1 and Section 16.2. $\leq TA \leq +70^{\circ}C$ $\leq TA \leq +70^{\circ}C$								
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D030 D031	Input Low Voltage I/O ports with TTL buffer with Schmitt Trigger buffer	VIL	Vss Vss	-	0.8V 0.2VD D	V V				
D032 D033	MCLR, RA4/T0CKI,OSC1 (in RC mode) OSC1 (in XT, HS and LP)		Vss Vss	-	0.2VD D 0.3VD	V V	Note1			
	Input High Voltage	Viн		-	D					
D040 D040A D041	with TTL buffer with Schmitt Trigger buffer		0.36VDD 0.45VDD 0.85VDD	-	Vdd Vdd Vdd	v v	$4.5V \le VDD \le 5.5V$ For VDD > 5.5V or VDD < 4.5V For entire VDD range			
D042 D042A	MCLR, RA4/T0CKI OSC1 (XT, HS and LP)		0.85VDD 0.85VDD 0.7VDD		VDD VDD VDD	V V	Note1			
D043 D070	OSC1 (in RC mode) PORTB weak pull-up current	IPURB	0.9Vdd 50	- 250	Vdd † 400	V μA	VDD = 5V, VPIN = VSS			
D060	Input Leakage Current (Notes 2, 3) I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-impedance			
D061 D063	MCLR, RA4/T0CKI OSC1		-	-	±5 ±5	μΑ μΑ	$Vss \le VPIN \le VDD$ $Vss \le VPIN \le VDD, XT, HS and$ LP osc configuration			
D080	Output Low Voltage I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C			
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C			
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	loL = 1.6 mA, VDD = 4.5V, -40°C to +85°C			
D083A +	Data in "Typ" column is at 5V 25°C i		-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

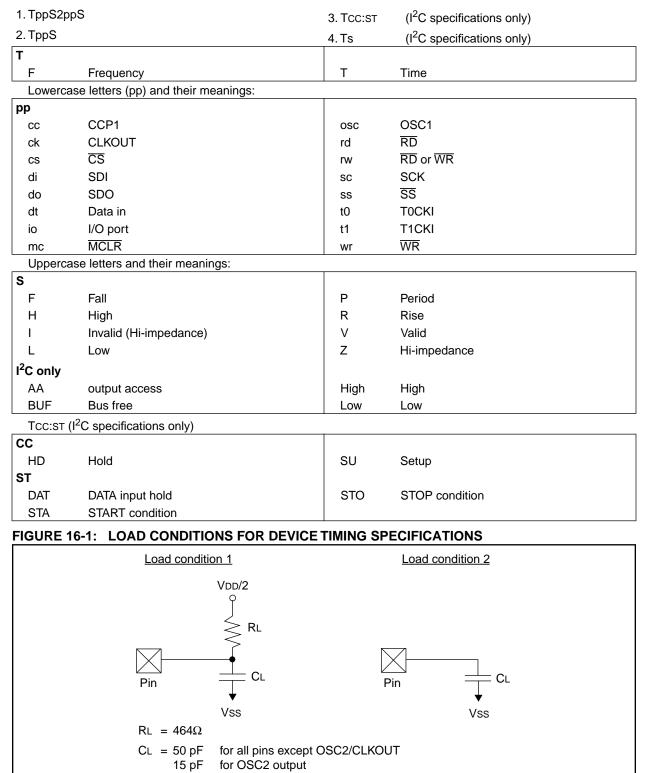
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

DC CH4	ARACTERISTICS	Operatir	ng temper ng voltage	ature	-40 -40 0°C	°C ≤ °C ≤ > ≤	less otherwise stated) TA \leq +125°C for automotive, TA \leq +85°C for industrial and TA \leq +70°C for commercial ibed in DC spec Section 16.1 and
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
NO.	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	ІОН = -3.0 mA, VDD = 4.5V, -40°C to +85°C
D090A			VDD-0.7	-	-	V	ІОН = -2.5 mA, VDD = 4.5V, -40°C to +125°C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	ІОН = -1.3 mA, VDD = 4.5V, -40°C to +85°C
D092A			VDD-0.7	-	-	V	ІОН = -1.0 mA, VDD = 4.5V, -40°C to +125°C
	Capacitive Loading Specs on Out- put Pins						
D100	OSC2 pin	Cosc2			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF	

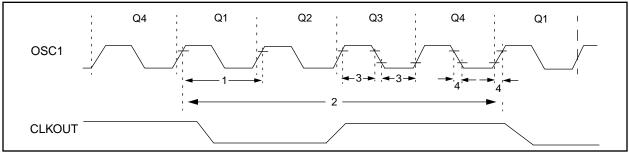
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.


 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

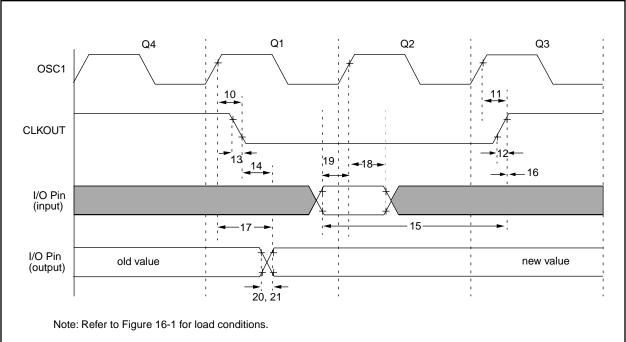
Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


16.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

16.5 <u>Timing Diagrams and Specifications</u>

FIGURE 16-2: EXTERNAL CLOCK TIMING


TABLE 16-2: EXTERNAL CLOCK TIMING REQUIREMENTS

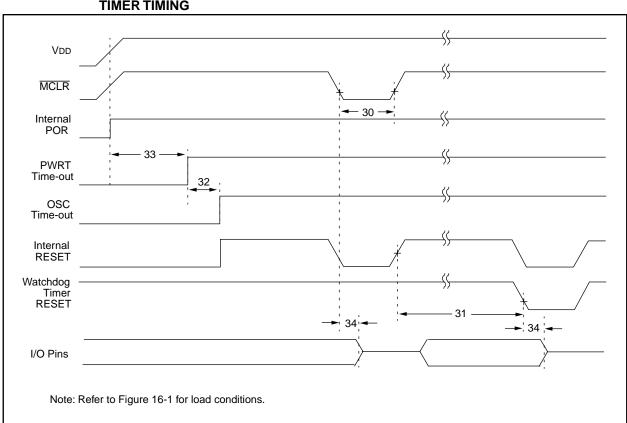
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C61-04
			DC	_	20	MHz	HS osc mode (PIC16C61-20
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode (PIC16C61-04
			1	_	20	MHz	HS osc mode (PIC16C61-2
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C61-0
			50	_	_	ns	HS osc mode (PIC16C61-2
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (PIC16C61-04
			50	_	1,000	ns	HS osc mode (PIC16C61-20
			5	_	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	4/Fosc	DC	μs	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	_		ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	_	_	ns	XT oscillator
	TosF	Fall Time	50	_	_	ns	LP oscillator
			15	—	—	ns	HS oscillator

 Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 16-3: CLKOUT AND I/O TIMING

TABLE 16-3: **CLKOUT AND I/O TIMING REQUIREMENTS**


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	15	30	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out va	alid	_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKC) TUC	0.25Tcy + 25	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOL	JT ↑	0	_	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Po	rt out valid	_	_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Po (I/O in hold time)	rt input invalid	TBD	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 time)	↑ (I/O in setup	TBD	_	_	ns	
20*	TioR	Port output rise time	PIC16C61	_	10	25	ns	
			PIC16LC61	_	_	60	ns	
21*	TioF	Port output fall time	PIC16C61	_	10	25	ns	
			PIC16LC61	_	_	60	ns	
22††*	Tinp	RB0/INT pin high or low time		20	_	_	ns	
23††*	Trbp	RB7:RB4 change int high or low time		20	_	_	ns	

These parameters are characterized but not tested.

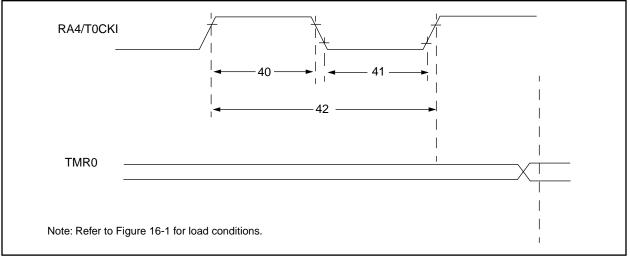
t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

These parameters are asynchronous events not related to any internal clock edges. ††

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 16-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 16-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	200	_	—	ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	—		TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34*	Tıoz	I/O Hi-impedance from MCLR Low	_	_	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

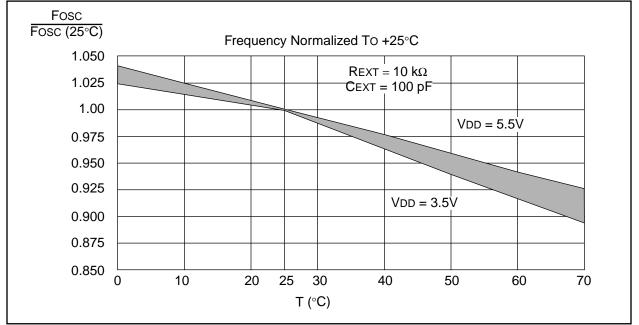
Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

FIGURE 16-5: TIMER0 CLOCK TIMINGS

TABLE 16-5: TIMER0 CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	—	_	ns	
			With Prescaler	10	-	—	ns	
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	_	_	ns	
			With Prescaler	10	-	_	ns	
42*	Tt0P	T0CKI Period		Greater of: 20 μs or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (2, 4,, 256)

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C61

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range. The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean +3\sigma) and (mean -3\sigma) respectively where σ is standard deviation.

FIGURE 17-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

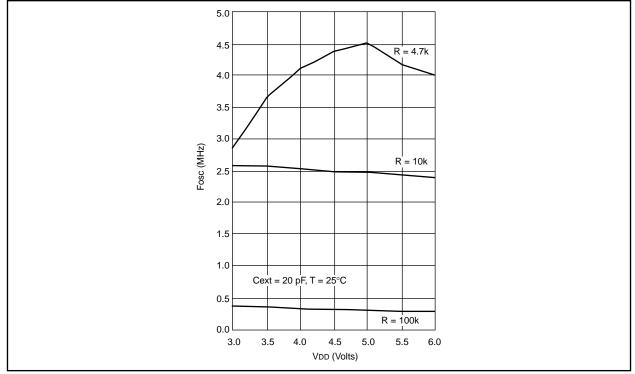
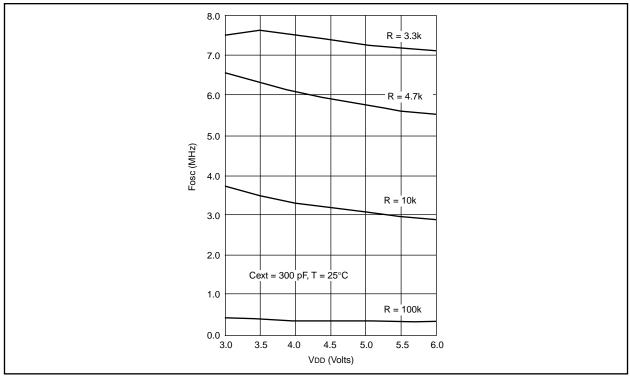
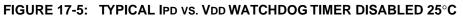

Cext	Rext	Average Fosc @ 5V, 25°C					
20 pF	4.7k	4.52 MHz	± 17.35%				
	10k	2.47 MHz	± 10.10%				
	100k	290.86 kHz	± 11.90%				
100 pF	3.3k	1.92 MHz	± 9.43%				
	4.7k	1.48 MHz	± 9.83%				
	10k	788.77 kHz	± 10.92%				
	100k	88.11 kHz	± 16.03%				
300 pF	3.3k	726.89 kHz	± 10.97%				
	4.7k	573.95 kHz	± 10.14%				
	10k	307.31 kHz	± 10.43%				
	100k	33.82 kHz	± 11.24%				

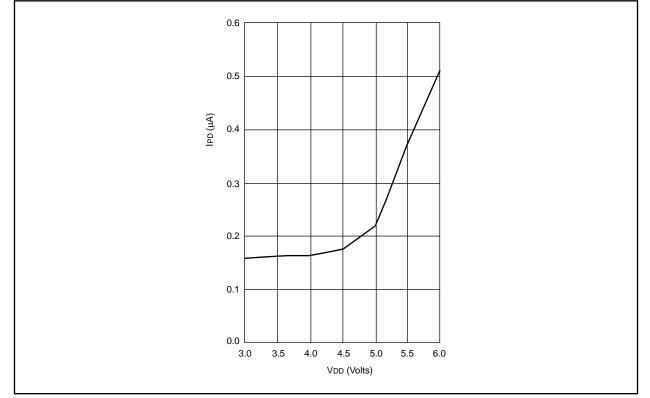
TABLE 17-1: RC OSCILLATOR FREQUENCIES


The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

^{© 1996} Microchip Technology Inc.


FIGURE 17-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD





Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

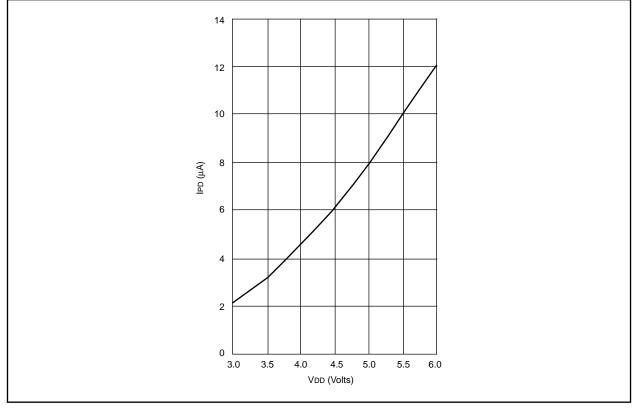
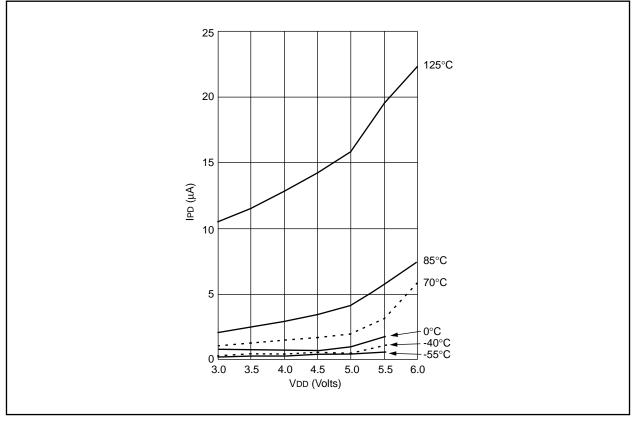
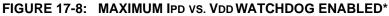
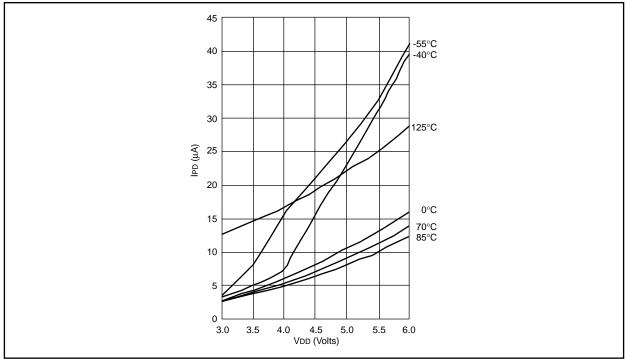





FIGURE 17-7: MAXIMUM IPD VS. VDD WATCHDOG DISABLED

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

*IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior.

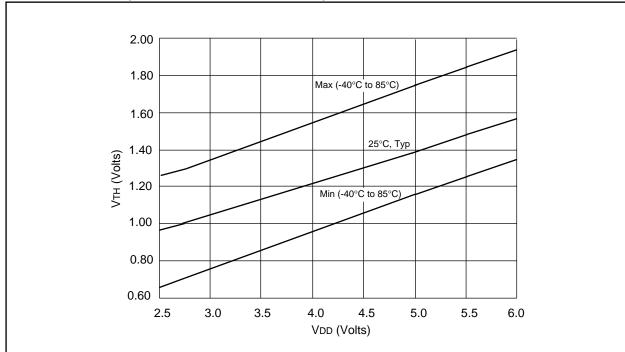


FIGURE 17-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS VS. VDD

FIGURE 17-10: VIH, VIL OF MCLR, TOCKI AND OSC1 (IN RC MODE) VS. VDD

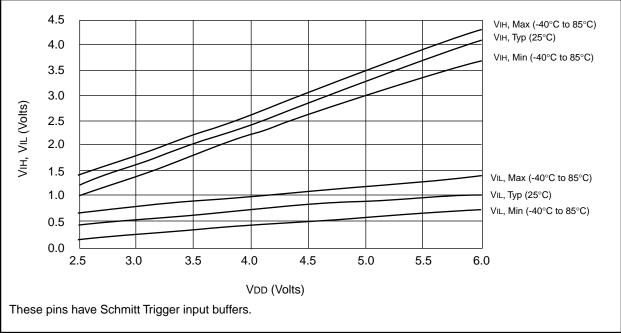
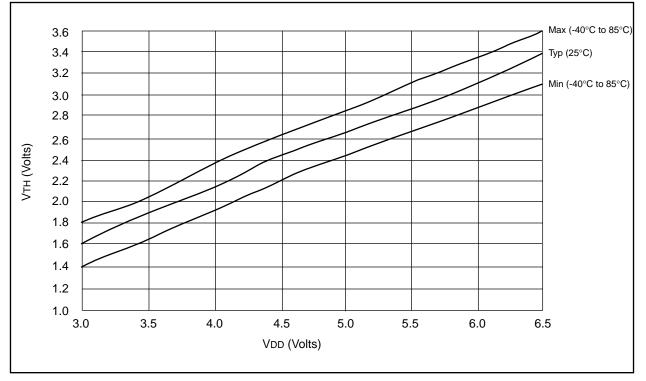
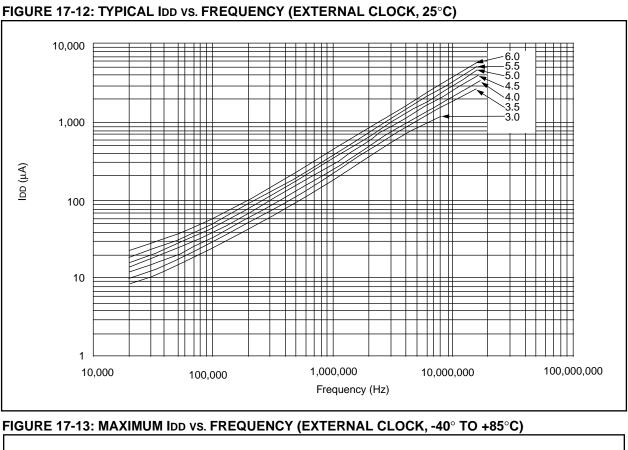
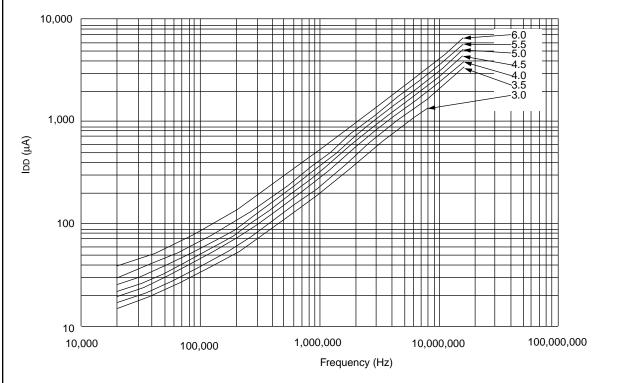
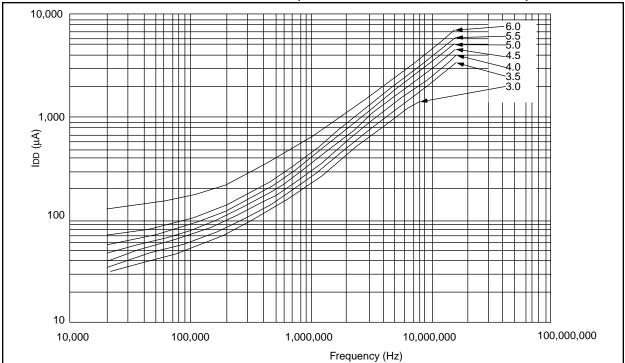
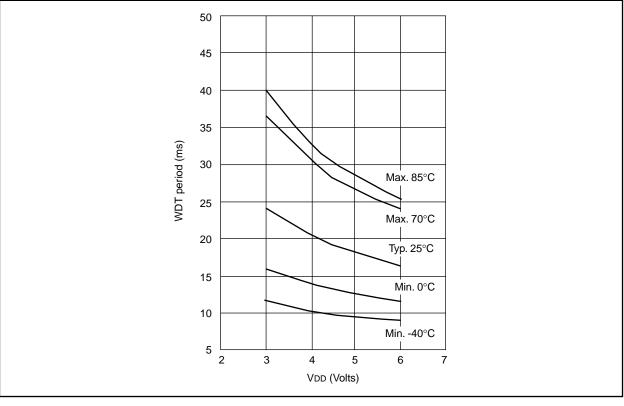
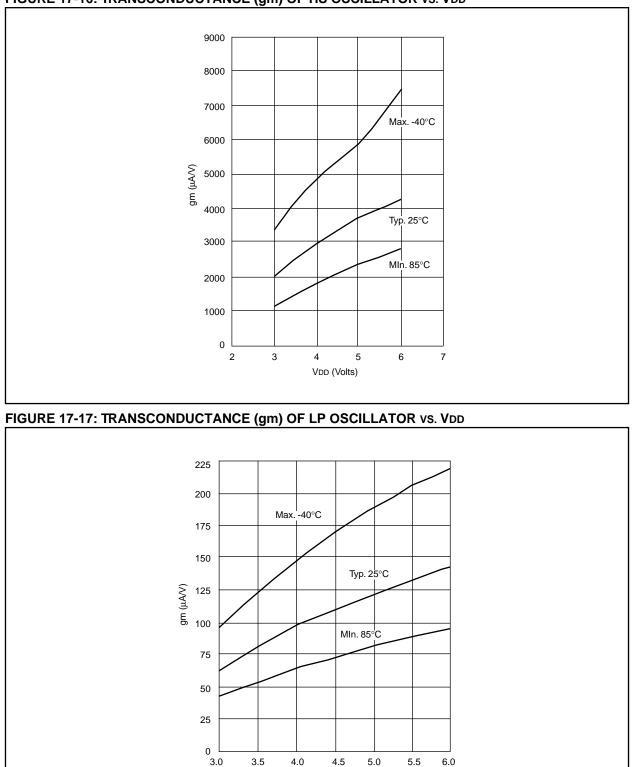
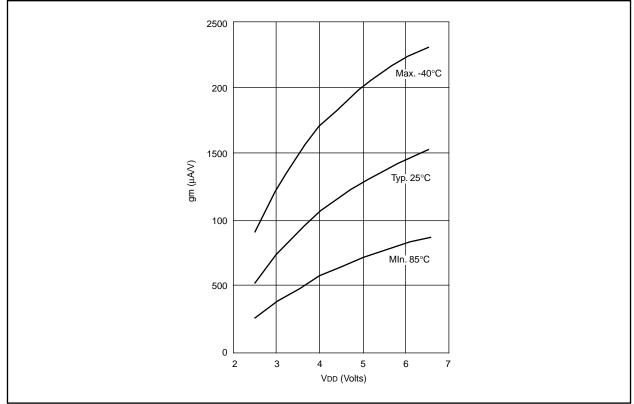





FIGURE 17-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) vs. Vdd

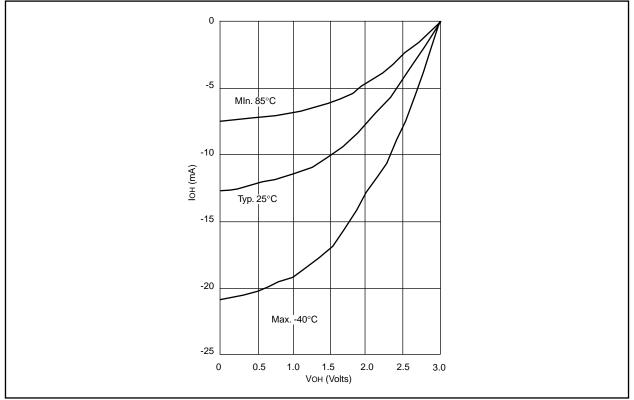



Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


FIGURE 17-14: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK, -55° TO +125°C)



Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A



VDD (Volts)

FIGURE 17-18: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

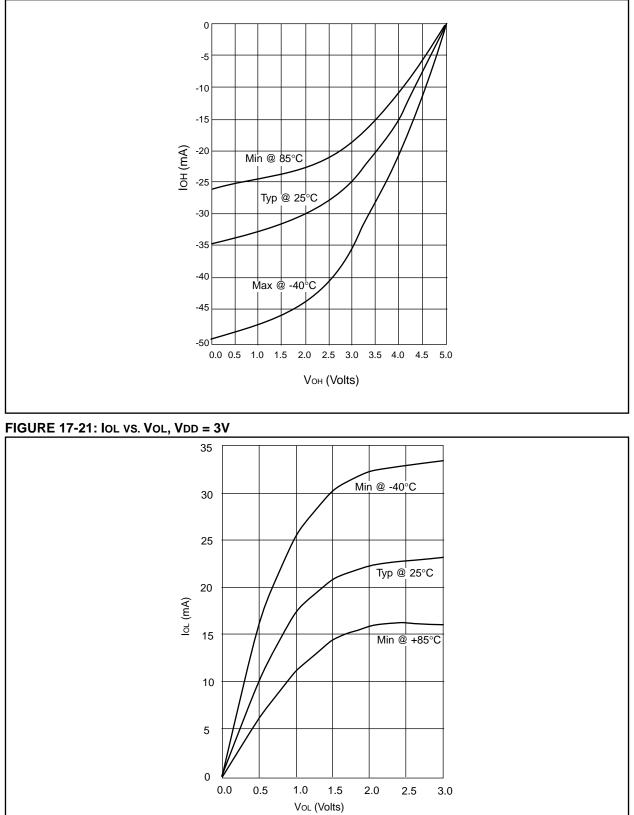
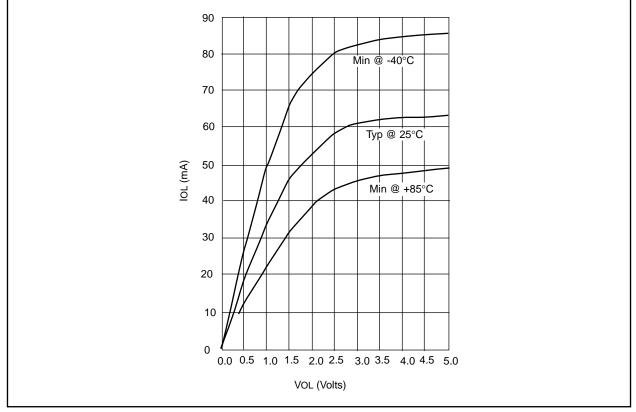


FIGURE 17-19: IOH VS. VOH, VDD = 3V



Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

FIGURE 17-22: IOL VS. VOL, VDD = 5V

TABLE 17-2: INPUT CAPACITANCE*

Pin Name	Typical Capacitance (pF)						
	18L PDIP	18L SOIC					
RA port	5.0	4.3					
RB port	5.0	4.3					
MCLR	17.0	17.0					
OSC1/CLKIN	4.0	3.5					
OSC2/CLKOUT	4.3	3.5					
TOCKI	3.2	2.8					
*All capacitance values are typical at 25°C. A part taken into account.	to part variation of $\pm 25\%$ (three stan	dard deviations) should be					

18.0 ELECTRICAL CHARACTERISTICS FOR PIC16C62/64

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Iok (V0 < 0 or V0 > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE* (combined)	
Maximum current sourced by PORTA, PORTB, and PORTE* (combined)	
Maximum current sunk by PORTC and PORTD* (combined)	200 mA
Maximum current sourced by PORTC and PORTD* (combined)	
* PORTD and PORTE not available on the PIC16C62.	

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL)
- **Note 2:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 18-1:	CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
	AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62-04 PIC16C64-04	PIC16C62-10 PIC16C64-10	PIC16C62-20 PIC16C64-20	PIC16LC62-04 PIC16LC64-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μ A max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq:4 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. at 3.0V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq:4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq:4 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. at 3.0V IPD: 0.9 µA typ. at 3.0V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq:4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V
	IPD: 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.		IPD: 1.5 μA typ. at 4.5V
LP	Freq:4 MHz max. VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq:200 kHz max.	Do not use in LP mode		VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq:200 kHz max.	Freq: 20 MHz max. VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq:200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

^{© 1996} Microchip Technology Inc.

18.1 DC Characteristics: PIC16C62-04, PIC16C64-04 (Commercial, Industrial) PIC16C62-10, PIC16C64-10 (Commercial, Industrial) PIC16C62-20, PIC16C64-20 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)												
DC CHAR	ACTERISTICS	Operatir	ng temp	erature			\leq TA \leq +85 °C for industrial and					
$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial												
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions					
D001	Supply Voltage	Vdd	4.0	-	6.0	V	XT, RC and LP osc configuration					
D001A			4.5	-	5.5	V	HS osc configuration					
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode					
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details					
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details					
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5.0	mA	XT, RC, osc configuration (PIC16C62/64-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)					
D013			-	13.5	30	mA	HS osc configuration (PIC16C62/64-20) Fosc = 20 MHz, VDD = 5.5V					
D020	Power-down Current	IPD	-	10.5	42	μA	VDD = $4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$					
D021	(Note 3, 5)		-	1.5	21	μA	VDD = 4.0V, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$					
D021A			-	1.5	24	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

18.2 DC Characteristics: PIC16LC62-04, PIC16LC64-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)											
DC CHA	RACTERISTICS	Operatir	ng temp	perature			$TA \leq +85^{\circ}C$ for industrial and					
0°C ≤ T						$TA \le +70^{\circ}C$ for commercial						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions					
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)					
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode					
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details					
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details					
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)					
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled					
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C					
D021	(Note 3, 5)		-	0.9	13.5	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$					
D021A			-	0.9	18	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

18.3 DC Characteristics: PIC16C62-04, PIC16C64-04 (Commercial, Industrial) PIC16C62-10, PIC16C64-10 (Commercial, Industrial) PIC16C62-20, PIC16C64-20 (Commercial, Industrial) PIC16LC62-04, PIC16LC64-04 (Commercial, Industrial)

		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +85^{\circ}$ C for industrial and									
DC CHAF	RACTERISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial									
		Operating voltage VDD range as described in DC spec Section 18.1									
		and Section 18.2									
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions				
	Input Low Voltage										
	I/O ports	VIL									
D030	with TTL buffer		Vss	-	0.5V	V					
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V					
D032	MCLR, RA4/T0CKI,OSC1 (in RC mode)		Vss	-	0.2Vdd	V					
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1				
	Input High Voltage										
	I/O ports	Viн									
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$				
D040A			0.8Vdd	-	Vdd	V	For VDD > 5.5V or VDD < 4.5				
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd		For entire VDD range				
D042	MCLR, RA4/T0CKI, RC7:RC4,		0.8VDD	-	Vdd	V					
	RD7:RD4, RB0/INT										
D042A	RE2:RE0, OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1				
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V					
D070	PORTB weak pull-up current	I PURB	50	200	†400	μΑ	VDD = 5V, VPIN = VSS				
	Input Leakage Current (Notes 2, 3)										
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance				
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$				
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration				
	Output Low Voltage										
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C				
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	lOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C				
	Output High Voltage										
D090	I/O ports (Note 3)	Vон	Vdd-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С				
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С				

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

DC CHAF	ACTERISTICS	Operatir	ng tempe	eratur	e -4 0°	0°C <u>-</u> C	less otherwise stated) ≤ TA ≤ +85°C for industrial and ≤ TA ≤ +70°C for commercial
			• •		o range a	as desc	ribed in DC spec Section 18.1
Damana		and Sec		-	Mari	1.1	
Param No.	Characteristic	Sym	Min	Typ †	Max	Units	Conditions
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

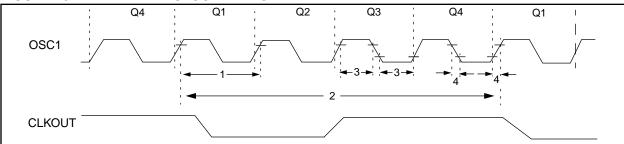
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

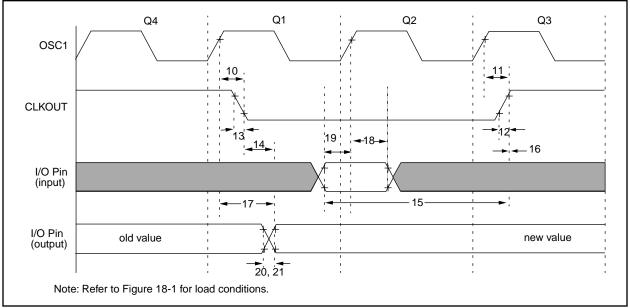
Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


18.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	3	3. Tcc:st	(I ² C specifications only)
2. TppS		4.Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercas	e letters (pp) and their meanings:		
рр			
cc	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	e letters and their meanings:	1	
S			
F	Fall	P	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:s⊤ (I ²	C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 18	-1: LOAD CONDITIONS FOR DEVICE	TIMING SP	ECIFICATIONS
	Load condition 1 VDD/2		Load condition 2
	ų į		
	\leq RL		
	✓●	F	Pin CL
			Vss
	· ··· ↓		V00
RL = 464	Vss		
		No	ote 1: PORTD and PORTE are not imple-
CL = 100	used as system bus		mented on the PIC16C62.
50 j	pF for all pins except OSC2/CLKOUT but including D and E outputs as ports		
15 j	pF for OSC2 output		

18.5 <u>Timing Diagrams and Specifications</u>


TABLE 18-2: EXTERNAL CLOCK TIMING REQUIREMENTS

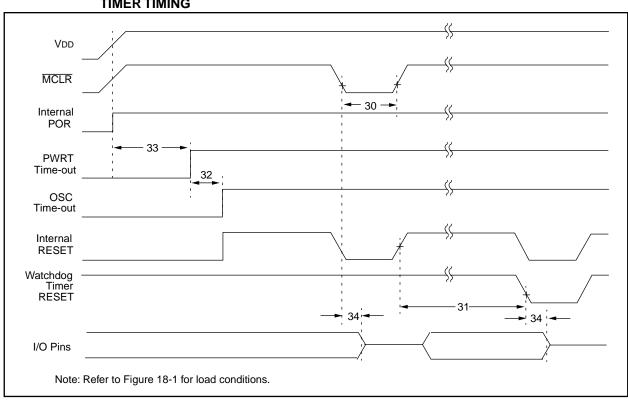
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC		4	MHz	HS osc mode (PIC16C62/64-04,
			DC		20	MHz	HS osc mode (PIC16C62/64-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C62/64-04,
			4	—	10	MHz	HS osc mode (PIC16C62/64-10)
			4	_	20	MHz	HS osc mode (PIC16C62/64-20)
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	—	ns	XT and RC osc mode
		(Note 1)	250	_	—	ns	HS osc mode (PIC16C62/64-04
			100	_	—	ns	HS osc mode (PIC16C62/64-10)
			50	_	—	ns	HS osc mode (PIC16C62/64-20)
			5	_	—	μs	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (PIC16C62/64-04,
			100	_	250	ns	HS osc mode (PIC16C62/64-10)
			50	_	1,000	ns	HS osc mode (PIC16C62/64-20)
			5		—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	—	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	—	—	ns	XT oscillator
	TosH	or Low Time	2.5	—	—	μs	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	—	25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 18-3: CLKOUT AND I/O TIMING

TABLE 18-3: **CLKOUT AND I/O TIMING REQUIREMENTS**


Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	_ OSC1↑ to CLKOUT↓			15	30	ns	Note 1
11*	TosH2ck H	OSC1 [↑] to CLKOUT [↑]		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		_		0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	\uparrow	0.25Tcy + 25		_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0		_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port ou	t valid	_		80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port inp hold time)	out invalid (I/O in	TBD	-	_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/	O in setup time)	TBD	_	_	ns	
20*	TioR	Port output rise time	PIC16C62/64	_	10	25	ns	
			PIC16LC62/64	_		60	ns	
21*	TioF	Port output fall time	PIC16C62/64	_	10	25	ns	
			PIC16LC62/64	_		60	ns	
22††*	Tinp	INT pin high or low time		20		_	ns	
23††*	Trbp	RB7:RB4 change INT high o	B4 change INT high or low time			_	ns	

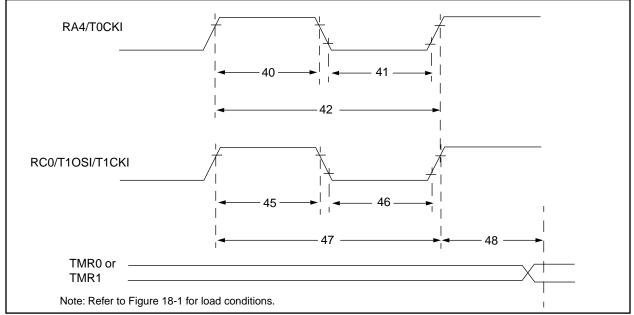
These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

These parameters are asynchronous events not related to any internal clock edge. **††**

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


TABLE 18-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

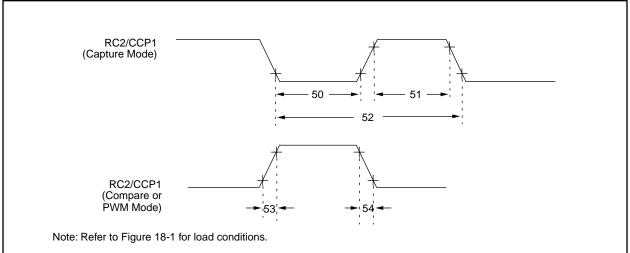
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	—	—	ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V$, $-40^{\circ}C$ to $+125^{\circ}C$
32	Tost	Oscillation Start-up Timer Period		1024Tosc	—	-	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34*	Tıoz	I/O Hi-impedance from MCLR Low	_	—	100	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 18-5: TIMER0 AND TIMER1 CLOCK TIMINGS

TABLE 18-5 :	TIMER0 AND TIMER1 CLOCK REQUIREMENTS


Param No.	Sym	Characteristic			Min	Тур†	Мах	Units	Conditions	
40*	Tt0H	T0CKI High Pulse	0CKI High Pulse Width No Prescaler		0.5Tcy + 20	_	_	ns		
				With Prescaler	10	—	_	ns		
41*	Tt0L			No Prescaler	0.5Tcy + 20	—	—	ns		
				With Prescaler	10	—	—	ns		
42*	Tt0P				Greater of: 20 μs or <u>Tcy + 40</u> Ν	-	_	ns	N = prescale value (1, 2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous,	No Prescaler	0.5TCY + 20	—	—	ns	;	
			Synchronous, With Prescaler	PIC16C62/64	10	—	—	ns		
				PIC16LC62/64	20	—	—	ns		
			Asynchronous		2Tcy	—	—	ns		
46*	Tt1L	T1CKI Low Time	Synchronous,	No Prescaler	0.5TCY + 20	—	—	ns		
			Synchronous, With Prescaler	PIC16C62/64	10	—	—	ns]	
				PIC16LC62/64	20	—	_	ns		
			Asynchronous		2Tcy	—	—	ns		
47*	Tt1P	T1CKI input period	Synchronous		Greater of: 20 μs or <u>Tcy + 40</u> Ν	_	_	ns	N = prescale value (1, 2, 4, 8)	
			Asynchronous		Greater of: 20 μs or 4Tcγ	-	—	ns		
	Ft1	Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN)			DC	-	200	kHz		
48	TCKEZtmr	Delay from extern	2Tosc	_	7Tosc	_				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

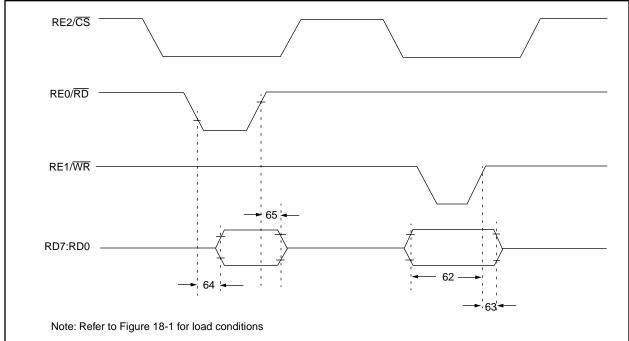


TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic	Characteristic				Мах	Units	Conditions
50*	TccL		No Prescaler		0.5Tcy + 20	—		ns	
		input low time	With Prescaler	PIC16C62/64	10	_	_	ns	
				PIC16LC62/64	20	_		ns	
51*	TccH	CCP1	No Prescaler		0.5Tcy + 20	_	_	ns	
		input high time	With Prescaler	PIC16C62/64	10	_	_	ns	
				PIC16LC62/64	20	_		ns	
52*	TccP	CCP1 input period	<u>3Tcy + 40</u> N	_	_		N = prescale value (1,4 or 16)		
53	TccR	CCP1 output rise ti	_	10	25	ns			
54	TccF	CCP1 output fall tir	_	10	25	ns			

* These parameters are characterized but not tested.

FIGURE 18-7: PARALLEL SLAVE PORT TIMING FOR THE PIC16C64 ONLY)

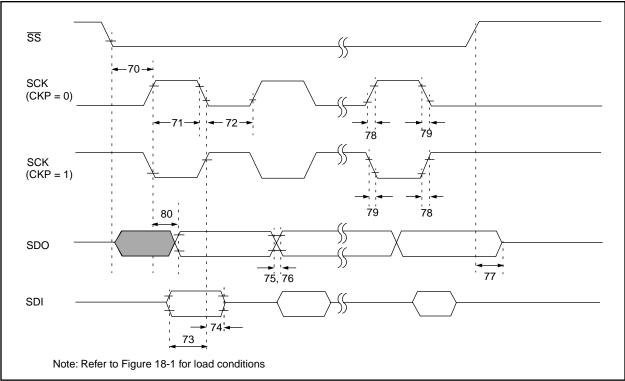


TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C64 ONLY

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
62	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}	î↑ (setup time)	20	_	_	ns	
63*	TwrH2dtl	$\overline{\text{WR}}^{\uparrow}$ or $\overline{\text{CS}}^{\uparrow}$ to data–in invalid PIC16C64		20	_	_	ns	
		(hold time)	PIC16LC64	35	—	_	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		-	_	60	ns	
65	TrdH2dtI	\overline{RD}^{\uparrow} or \overline{CS}^{\uparrow} to data–out invalid		10	_	30	ns	

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

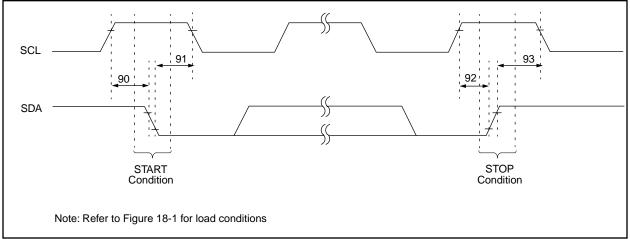

FIGURE 18-8: SPI MODE TIMING

TABLE 18-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү		—	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_		ns	
72	TscL	SCK input low time (slave mode)	TCY + 20	—		ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100		_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	_	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time	—	10	25	ns	
77	TssH2doZ	$\overline{\text{SS}}\downarrow$ to SDO output hi-impedance	10	—	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

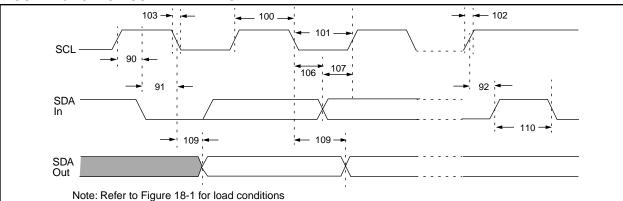

FIGURE 18-9: I²C BUS START/STOP BITS TIMING

TABLE 18-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition 100 kHz mode		4700	—	—		Only relevant for repeated START
		Setup time	400 kHz mode	600	—	—	ns	condition
91	THD:STA	START condition	100 kHz mode	4000	—	—		After this period the first clock
		Hold time	400 kHz mode	600	—	_	ns	pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	—		
		Setup time	400 kHz mode	600	—	—	ns	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—		
		Hold time	400 kHz mode	600	—	—	ns	

TABLE 18-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	PIC16C64 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	-	μs	PIC16C64 must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	PIC16C64 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C64 must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy			
102	Tr	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	Tf	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	-	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μs	before a new transmission ca start
	Cb	Bus capacitive loading		_	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

NOTES:

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

19.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C62/64

NOT AVAILABLE AT THIS TIME

^{© 1996} Microchip Technology Inc.

NOTES:

20.0 ELECTRICAL CHARACTERISTICS FOR PIC16C62A/R62/64A/R64

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1. Power dissipation is calculated as follows: $Pdis = Von \times Inn - \sum OH + \sum {(Von - V)}$	

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL) **Note 2:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,
- a series resistor of 50-100 Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 20-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62A-04 PIC16CR62-04 PIC16C64A-04 PIC16CR64-04	PIC16C62A-10 PIC16CR62-10 PIC16C64A-10 PIC16CR64-10	PIC16C62A-20 PIC16CR62-20 PIC16C64A-20 PIC16CR64-20	PIC16LC62A-04 PIC16LCR62-04 PIC16LC64A-04 PIC16LCR64-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 2.0 mA typ. at 3.0V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq:4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 2.0 mA typ. at 3.0V IPD: 0.9 µA typ. at 3.0V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.		VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

^{© 1996} Microchip Technology Inc.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

20.1 DC Characteristics: PIC16C62A-04,PIC16C64A-04 (Commercial, Industrial, Automotive) PIC16CR62-04,PIC16CR64-04 (Commercial, Industrial, Automotive) PIC16C62A-10,PIC16C64A-10 (Commercial, Industrial, Automotive) PIC16CR62-10,PIC16CR64-10 (Commercial, Industrial, Automotive) PIC16C62A-20,PIC16C64A-20 (Commercial, Industrial, Automotive) PIC16CR62-20,PIC16CR64-20 (Commercial, Industrial, Automotive)

		Standar	d Ope	rating	Condi	tions (unless otherwise stated)					
	RACTERISTICS	Operatir	ng temp	erature			\leq TA \leq +125°C for automotive,					
							\leq TA \leq +85°C for industrial and					
		$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial										
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions					
D001	Supply Voltage	Vdd	4.0	-	6.0	V	XT, RC and LP osc configuration					
D001A			4.5	-	5.5	V	HS osc configuration					
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode					
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details					
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details					
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	Boden configuration bit enabled					
			3.7	4.0	4.4	V	Automotive Range Only					
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC, osc configuration (PIC16C62A/R62/ 64A/R64-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)					
D013			-	13.5	30	mA	HS osc configuration (PIC16C62A/R62/64A/ R64-20) Fosc = 20 MHz, VDD = 5.5V					
D015*	Brown-out Reset Current (Note 7)	Δ Ibor	-	350	425	μA	BOR enabled, VDD = 5.0V					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

DC CHA	RACTERISTICS	Standar Operatir			ə -4()°C ≤)°C ≤	unless otherwise stated) $TA \le +125^{\circ}C$ for automotive, $TA \le +85^{\circ}C$ for industrial and $TA \le +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D020 D021 D021A D021B	Power-down Current (Note 3, 5)	IPD	- - -	10.5 1.5 1.5 2.5	42 21 24 24	μΑ μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD = 4.0V, WDT \text{ enabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -0^\circC \text{ to } +70^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +85^\circC \\ VDD = 4.0V, WDT \text{ disabled}, -40^\circC \text{ to } +125^\circC \end{array}$
D023*	Brown-out Reset Current (Note 6)	Δ Ibor	-	350	425	μA	BOR enabled, VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

 The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

20.2 DC Characteristics: PIC16LC62A-04, PIC16LCR62-04 (Commercial, Industrial, Automotive⁽⁶⁾) PIC16LC64A-04, PIC16LCR64-04 (Commercial, Industrial, Automotive⁽⁶⁾)

DC CHA	RACTERISTICS	Operatin		•	e -40 -40	°C ≤ °C ≤	Inless otherwise stated) TA \leq +125°C for automotive, TA \leq +85°C for industrial and
Param No.	Characteristic	Sym	Min	Тур†	0°C Max	⊴ Units	TA ≤ +70°C for commercial Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	Boden bit in configuration word enabled
			3.7	4.0	4.4	V	Automotive Range Only
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 7)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3, 5)		-	0.9	5	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$
D021A			-	0.9	5	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021B			-	0.9	10	μA	VDD = 3.0V, WDT disabled, -40°C to +125°C
D023*	Brown-out Reset Current (Note 7)	Δ IBOR	-	350	425	μΑ	BOR enabled, VDD = 5.0V

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and † are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: Automotive operating range is Advanced information for this device.
- 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

20.3 DC Characteristics: PIC16C62A-04,PIC16C64A-04 (Commercial, Industrial, Automotive) PIC16CR62-04,PIC16CR64-04 (Commercial, Industrial, Automotive) PIC16C62A-10,PIC16C64A-10 (Commercial, Industrial, Automotive) PIC16CR62-10,PIC16CR64-10 (Commercial, Industrial, Automotive) PIC16C62A-20,PIC16C64A-20 (Commercial, Industrial, Automotive) PIC16CR62-20,PIC16CR64-20 (Commercial, Industrial, Automotive) PIC16LC62A-04,PIC16LC64A-04 (Commercial, Industrial, Automotive) PIC16LCR62-04,PIC16LCR64-04 (Commercial, Industrial, Automotive)

		Standa	rd Opera	ting	Conditio	ons (u	nless otherwise stated)		
		Operati	ng tempe	ratu	re -40	°C	\leq TA \leq +125°C for automotive,		
					-4(D°C	\leq TA \leq +85°C for industrial and		
DC CHA	RACTERISTICS				0°0	0	\leq TA \leq +70°C for commercial		
		Operati	ng voltag	e Vd	D range a	as desc	ribed in DC spec Section 20.1 and		
		Section	20.2						
Param	Characteristic	Sym	Min	Тур	Max	Units	s Conditions		
No.				1					
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.5V	V			
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V			
D032	MCLR, RA4/T0CKI,OSC1 (in RC		Vss	-	0.2Vdd	V			
	mode)								
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1		
	Input High Voltage								
	I/O ports	VIH		-					
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$		
D040A			0.8Vdd	-	Vdd	V	For VDD > 5.5V or VDD < 4.5V		
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range		
D042	MCLR, RA4/T0CKI, RC7:RC4,		0.8Vdd	-	Vdd	V			
	RD7:RD4, RB0/INT,RE2:RE0								
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	I PURB	50	250	†400	μA	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı.	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq VPIN \leq VDD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

- 2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as coming out of the pin.

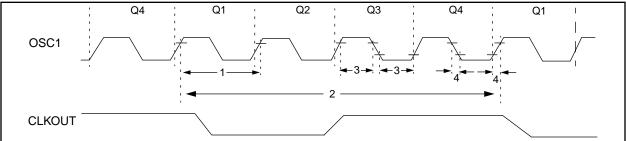
		Standa	rd Opera	ting	Conditi	ons (ur	nless otherwise stated)				
		Operati	ng tempe	ratur			\leq TA \leq +125°C for automotive,				
					-4	0°C :	\leq TA \leq +85°C for industrial and				
DC CHA	RACTERISTICS				0°	C :	\leq TA \leq +70°C for commercial				
		Operating voltage VDD range as described in DC spec Section 20.1 and									
		Section 20.2									
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions				
	Output Low Voltage										
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C				
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C				
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	lOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C				
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C				
	Output High Voltage										
D090	I/O ports (Note 3)	Vон	Vdd-0.7	-	-	V	Юн = -3.0 mA, VDD = 4.5V, -40°С to +85°С				
D090A			VDD-0.7	-	-	V	Юн = -2.5 mA, VDD = 4.5V, -40°С to +125°С				
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С				
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С				
	Capacitive Loading Specs on Out-										
_	put Pins										
D100	OSC2 pin	Cosc2			15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.				
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF					
D102	SCL, SDA in I ² C mode	Cb			400	pF					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.


20.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

	-	5	
1. TppS2	ppS	3. Tcc:s ⁻	T (I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	\overline{RD} or \overline{WR}
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	case letters and their meanings:		
S			
F	Fall	P	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st	(I ² C specifications only)	I.	
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
	20-1: LOAD CONDITIONS FOR DE		SPECIFICATIONS
FIGURE			
	Load condition 1		Load condition 2
	Vdd/2		
	9		
	\ge RL		Pin — CL
			*
			Vss
	*		
	Vss	RL = 464 Ω	
		CL = 50 pF	for all pins except OSC2/CLKOUT
		00 PI	but including D and E outputs as ports
Note 1:	PORTD and PORTE are not	15 pF	for OSC2 output
	implemented on the PIC16C62A/R62.		

20.5 <u>Timing Diagrams and Specifications</u>

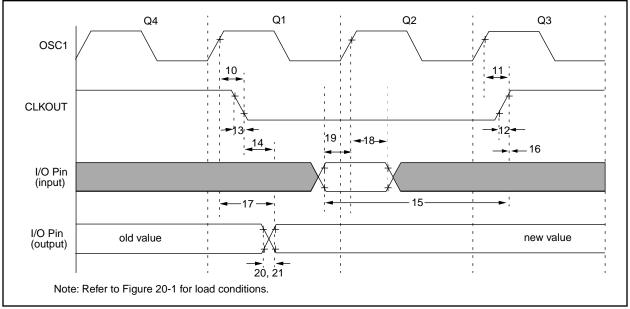
FIGURE 20-2: EXTERNAL CLOCK TIMING

TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (PIC16C64A/ CR64-04,
							PIC16LC64A/LCR64-04)
			DC	—	20	MHz	HS osc mode (PIC16C64A/ CR64-20)
			DC		200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1		4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/LCR64-04)
			4	—	10	MHz	HS osc mode (PIC16C64A/ CR64-10)
			4	—	20	MHz	HS osc mode (PIC16C64A/ CR64-20)
			5	_	200	kHz	LP osc mode

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.


Applicable Devices	61	62	62A	R62	63	64	64A	R64	65	65A
			0-7.		00	•••	0.7.		00	007.

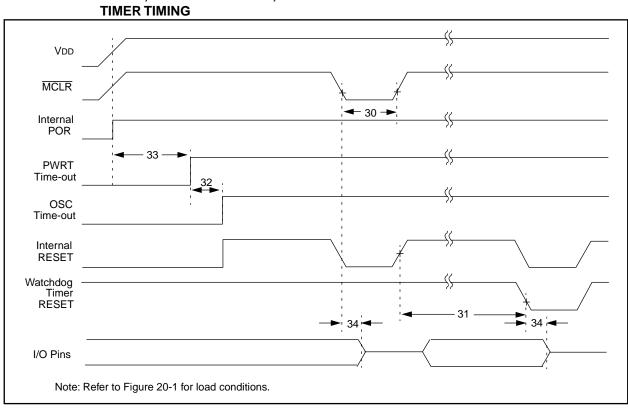
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/ LCR64-04)
			100	—	_	ns	HS osc mode (PIC16C64A/ CR64-10)
			50	—	_	ns	HS osc mode (PIC16C64A/ CR64-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (PIC16C64A/ CR64-04, PIC16LC64A/ LCR64-04)
			100	—	250	ns	HS osc mode (PIC16C64A/ CR64-10)
			50	—	250	ns	HS osc mode (PIC16C64A/ CR64-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	_		ns	XT oscillator
	TosH	Low Time	2	—		μs	LP oscillator
			20	_		ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	-	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

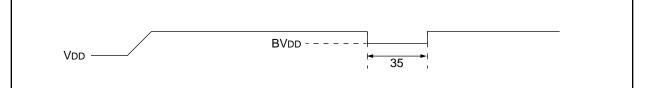
FIGURE 20-3: CLKOUT AND I/O TIMING

TABLE 20-3: **CLKOUT AND I/O TIMING REQUIREMENTS**


Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑			75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	3	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	3	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out va	alid	—	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKC) TUC	Tosc + 200	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOU	JT ↑	0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Po	rt out valid	_	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Por (I/O in hold time)	rt input invalid	100	_	—	ns	
19*	TioV2osH	Port input valid to OSC1	↑ (I/O in setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16C62A/ R62/64A/R64	—	10	40	ns	
			PIC16LC62A/ R62/64A/R64	_	—	80	ns	
21*	TioF	Port output fall time	PIC16C62A/ R62/64A/R64	_	10	40	ns	
			PIC16LC62A/ R62/64A/R64	_	—	80	ns	
22††*	Tinp	RB0/INT pin high or low	time	Тсу	_	_	ns	
23††*	Trbp	RB7:RB4 change int hig	h or low time	Тсу	_	_	ns	

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


†† These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP

FIGURE 20-5: BROWN-OUT RESET TIMING

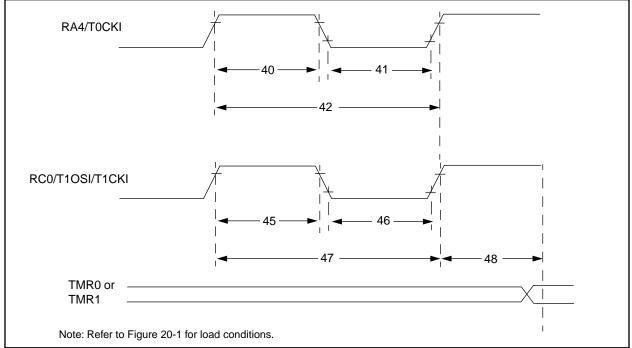
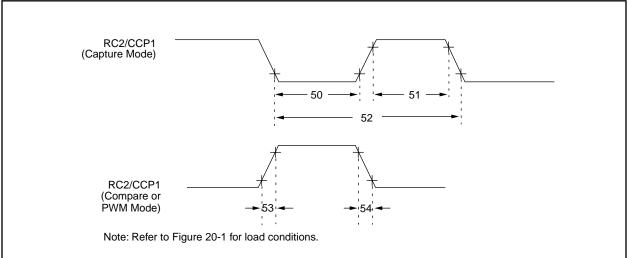


TABLE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2		—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V$, $-40^{\circ}C$ to $+125^{\circ}C$
32	Tost	Oscillation Start-up Timer Period		1024Tosc	_	-	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	—	μs	$VDD \le BVDD (D005)$

* These parameters are characterized but not tested.

FIGURE 20-6: TIMER0 AND TIMER1 CLOCK TIMINGS


TABLE 20-5: TIMER0 AND TIMER1 CLOCK REQUIREMENTS

Parameter No.	Sym	Characterist	ic		Min	Тур†	Мах	Units	Conditions
40*	Tt0H	T0CKI High F	ulse Width	No Prescaler	0.5Tcy + 20	—	_	ns	
				With Prescaler	10	-	_	ns	
41*	Tt0L	T0CKI Low P	ulse Width No Prescaler		0.5Tcy + 20	—	—	ns	
			With Prescaler		10	—	—	ns	
42*	Tt0P	T0CKI Period			<u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4,, 256)
45*	Tt1H	T1CKI High	Synchronous, No Prescaler		0.5Tcy + 20	—	—	ns	
		Time	Synchronous, PIC16C62A/R62/ With Prescaler 64A/R64		10	—	—	ns	
				PIC16LC62A/R62/ 64A/R64	20	-	—	ns	
			Asynchronous		2Tcy	—	—	ns	
46*	Tt1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5Tcy + 20	—	—	ns	
		Time	Synchronous, With Prescaler	PIC16C62A/R62/ 64A/R64	10	—	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	—	—	ns	
			Asynchronous		2Tcy	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous		<u>Tcy + 40</u> N	—	—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		4Tcy	—	—	ns	
	Ft1		ator input frequency range abled by setting bit T1OSCEN)		DC	-	200	kHz	
48	TCKEZtmr1	Delay from ex	ternal clock edge	2Tosc	_	7Tosc	_		

These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

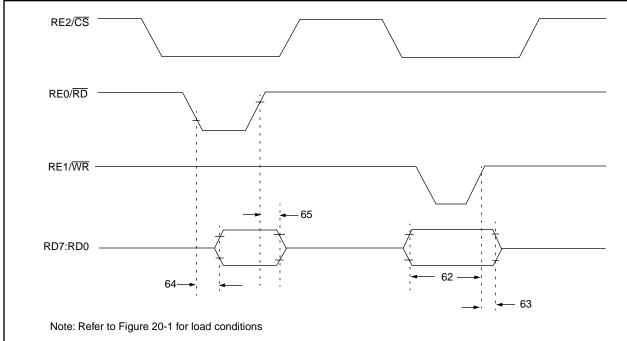
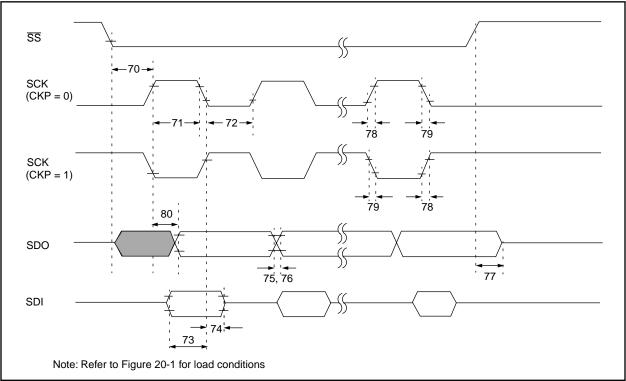


TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1	No Prescaler		0.5Tcy + 20	—	_	ns	
		input low time	With Prescaler	PIC16C62A/R62/ 64A/R64	10	-	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	-	_	ns	
51*	TccH	CCP1	No Prescaler		0.5Tcy + 20	—		ns	
		input high time	With Prescaler	PIC16C62A/R62/ 64A/R64	10	-	_	ns	
				PIC16LC62A/R62/ 64A/R64	20	-	-	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	-	-	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise ti	me		_	10	25	ns	
54*	TccF	CCP1 output fall tir	ne	PIC16C62A/R62/ 64A/R64	_	10	25	ns	
				PIC16LC62A/R62/ 64A/R64	_	-	45	ns	

* These parameters are characterized but not tested.

FIGURE 20-8: PARALLEL SLAVE PORT TIMING FOR THE PIC16C64A/R64 ONLY


TABLE 20-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C64A/R64 ONLY

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	lata in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)		20	_	—	ns	
					_	_	ns	Automotive Range Only
63*	TwrH2dtl	\overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data–in invalid (hold	PIC16C64A/R64	20	—	—	ns	
		time)	PIC16LC64A/R64	35		—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		—	—	80	ns	
				-	_	90	ns	Automotive Range Only
65*	TrdH2dtl	\overline{RD} f or \overline{CS} f to data-out invalid		10	_	30	ns	

* Characterized but not tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

FIGURE 20-9: SPI MODE TIMING

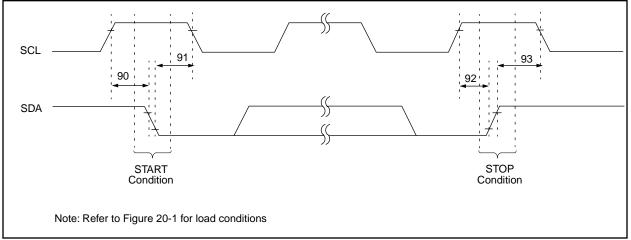


TABLE 20-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү		_	ns	
71*	TscH	SCK input high time (slave mode)	TCY + 20	_	—	ns	
72*	TscL	SCK input low time (slave mode)	TCY + 20			ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100		—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100		_	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	$\overline{\text{SS}}\downarrow$ to SDO output hi-impedance	10		50	ns	
78*	TscR	SCK output rise time (master mode)		10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

Characterized but not tested.

FIGURE 20-10: I²C BUS START/STOP BITS TIMING

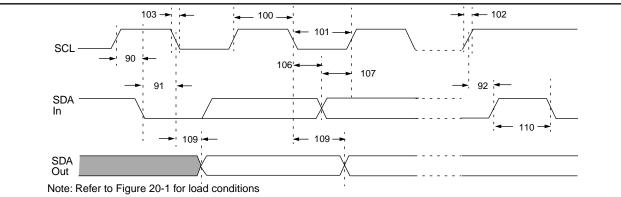


TABLE 20-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	-		condition
91*	THD:STA	START condition	100 kHz mode	4000	—	—	ns	After this period the first clock
		Hold time	400 kHz mode	600	—	—	113	pulse is generated
92*	Tsu:sto	STOP condition	100 kHz mode	4700	—	—	ns	
		Setup time	400 kHz mode	600	—	—	113	
93*	THD:STO	STOP condition	100 kHz mode	4000	—	—	ns	
		Hold time	400 kHz mode	600	—	—	115	

*Characterized but not tested.

TABLE 20-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	PIC16C64A/R64 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	PIC16C64A/R64 must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	PIC16C64A/R64 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C64A/R64 must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	—		
102*	Tr	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

Characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT \geq 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

NOTES:

 Applicable Devices
 61
 62
 62A
 R62
 63
 64
 64A
 R64
 65
 65A

21.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C62A/ R62/64A/R64

NOT AVAILABLE AT THIS TIME

© 1996 Microchip Technology Inc.

NOTES:

22.0 ELECTRICAL CHARACTERISTICS FOR PIC16C65

Absolute Maximum Ratings †

Ambient temperature under bies	55 to 1125°C
Ambient temperature under bias Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	
Output clamp current, Iok (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD	-Voh) x Ioh} + Σ (Vol x Iol)

Note 2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 22-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C65-04	PIC16C65-10	PIC16C65-20	PIC16LC65-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. at 3V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. at 3V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V
	IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	IPD 1.0 μA typ. at 4.5V Freq: 10 MHz max.	IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.		IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

^{© 1996} Microchip Technology Inc.

22.1

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

DC CHARACTERISTICS: PIC16C65-04 (Commercial, Industrial, Automotive⁽⁶⁾) PIC16C65-10 (Commercial, Industrial, Automotive⁽⁶⁾) PIC16C65-20 (Commercial, Industrial, Automotive⁽⁶⁾)

	Standard Operating Conditions (unless otherwise stated)									
		Operating temperature $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for automotive,								
DC CHA	RACTERISTICS	-40°C \leq TA \leq +85°C for industrial and								
					0°0	C ≦	\leq TA \leq +70°C for commercial			
Param No.	Characteristic	Sym Min Typ† Max Units				Units	Conditions			
D001	Supply Voltage	Vdd	4.0	-	6.0	V	XT, RC and LP osc configuration			
D001A			4.5	-	5.5	V	HS osc configuration			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode			
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC osc configuration (PIC16C65-04) Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	13.5	30	mA	HS osc configuration (PIC16C65-20) Fosc = 20 MHz, VDD = 5.5V			
D020	Power-down Current	IPD	-	10.5	800	μA	VDD = 4.0V, WDT enabled,-40°C to +85°C			
D021	(Note 3, 5)		-	1.5	800	μA	VDD = 4.0V, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$			
D021A			-	1.5	800	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021B			-	1.5	800	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

22.2 DC CHARACTERISTICS: PIC16LC65-04 (Commercial, Industrial, Automotive⁽⁶⁾)

		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for automotive,								
	ARACIERISTICS				-40	-	$TA \leq +85^{\circ}C$ for industrial and			
$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial										
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions			
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode			
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure Power-on Reset	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	22.5	105	μA	LP osc configuration Fosc = 32 kHz, VDD = 4.0V, WDT disabled			
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C			
D021	(Note 3, 5)		-	0.9	13.5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C			
D021A			-	0.9	18	μA	VDD = 3.0V, WDT disabled, -40°C to +85°C			
D021B			-	0.9	24	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A												
22.3		PIC16C65-04 (Commercial, Industrial, Automotive ⁽⁴⁾) PIC16C65-10 (Commercial, Industrial, Automotive ⁽⁴⁾) PIC16C65-20 (Commercial, Industrial, Automotive ⁽⁴⁾) PIC16LC65-04 (Commercial, Industrial, Automotive ⁽⁴⁾)										
		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for automotive,										
DC CHA	RACTERISTICS	-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial										
		Operating voltage VDD range as described in DC spec Section 22.1 ar										
		Section	22.2									
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions					
	Input Low Voltage											
	I/O ports	VIL										
D030	with TTL buffer		Vss	-	0.5V	V						
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V						
D032	MCLR, RA4/T0CKI,OSC1		Vss	-	0.2Vdd	V						
022	(in RC mode)		Vee		0.2\/pp		Noto1					
D033 OSC1 (in XT, HS and LP) Vss - 0.3VDD V Note1 Input High Voltage <td< td=""></td<>												
	I/O ports	VIH		-								
D040	with TTL buffer		2.0	-	Vdd	v	$4.5V \leq VDD \leq 5.5V$					
D040A			0.8VDD	-	VDD		For VDD > $5.5V$ or VDD < $4.5V$					
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd		For entire VDD range					
D042	MCLR, RA4/T0CKI, RC7:RC4, RD7:RD4, RB0/INT		0.8Vdd	-	Vdd	V						
D042A	RE2:RE0, OSC1 (XT, HS and LP)		0.7 Vdd	-	Vdd	V	Note1					
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V						
D070	PORTB weak pull-up current	I PURB	50	250	†400	μA	VDD = 5V, VPIN = VSS					
	Input Leakage Current (Notes 2, 3)											
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance					
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$					
D063	OSC1		-	-	±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS, and LP osc configuration					
	Output Low Voltage											
D080	I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C					
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C					
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	lo∟ = 1.6 mA, VDD = 4.5V, -40°C to +85°C					
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5 V, -40°C to +125°C					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

		Standa	rd Opera	ting	Conditi	ons (ui	nless otherwise stated)		
		Operating temperature -40° C \leq TA \leq +125 $^{\circ}$ C for automotive,							
	RACTERISTICS				-		\leq TA \leq +85°C for industrial and		
	RACIERISTICS				0°0	C :	\leq TA \leq +70°C for commercial		
		Operatir	ng voltage	e Vdi	o range a	as desc	ribed in DC spec Section 22.1 and		
		Section	22.2						
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				†					
	Output High Voltage	.,				.,			
D090	I/O ports (Note 3)	Voh	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5 V,		
DOOOA						v	-40°C to +85°C		
D090A			VDD-0.7	-	-		IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С		
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C		
	Capacitive Loading Specs on Out-								
	put Pins								
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.		
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF			
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF			

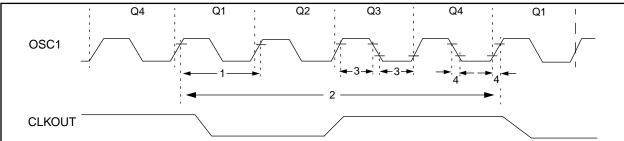
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


22.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	S	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercas	e letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	\overline{RD} or \overline{WR}
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	e letters and their meanings:	1	
S			
F	Fall	P	Period
н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (l ²	C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 22	-1: LOAD CONDITIONS FOR DEVICE	TIMING SF	PECIFICATIONS
	Load condition 1		Load condition 2
	Vdd/2	5	
	Ŷ		
	$\stackrel{\scriptstyle <}{\scriptstyle \sim}$ RL	F	
			···· •
	✓		Vss
	★	= 464Ω	
	Vss CL =		r D and E port outputs when
			sed as system bus
			r all pins except OSC2/CLKOUT
			ut including D and E outputs as ports
		15 pF fo	r OSC2 output
1			

22.5 <u>Timing Diagrams and Specifications</u>

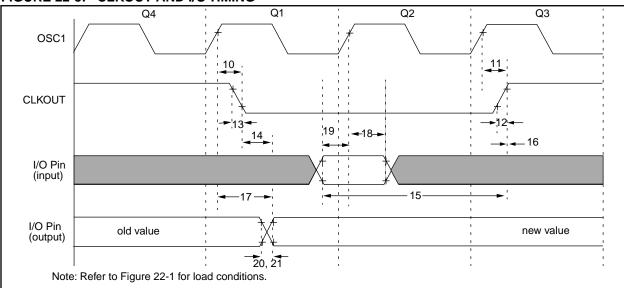


TABLE 22-2: EXTERNAL CLOCK TIMING REQUIREMENTS

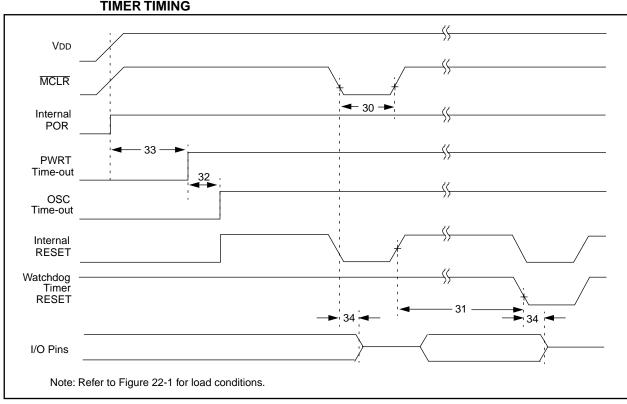
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (PIC16C65-04,
							PIC16LC65-04)
			DC	_	20	MHz	HS osc mode (PIC16C65-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	—	4	MHz	HS osc mode (PIC16C65-04, PIC16LC65-04)
			4	_	10	MHz	HS osc mode (PIC16C65-10)
			4	_	20	MHz	HS osc mode (PIC16C65-20)
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250		—	ns	XT and RC osc mode
		(Note 1)	250	—	_	ns	HS osc mode (PIC16C65-04, PIC16LC65-04)
			100	_	_	ns	HS osc mode (PIC16C65-10)
			50	_	_	ns	HS osc mode (PIC16C65-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (PIC16C65-04, PIC16LC65-04)
			100	_	250	ns	HS osc mode (PIC16C65-10)
			50	—	250	ns	HS osc mode (PIC16C65-20)
			5	_	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10	—	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	-	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 22-3: CLKOUT AND I/O TIMING

TABLE 22-3 :	CLKOUT AND I/O TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		_	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		0.25Tcy + 25	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input hold time)	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)		_	—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in	n setup time)	TBD		_	ns	
20*	TioR	Port output rise time	PIC16C65	_	10	25	ns	
			PIC16LC65	_		60	ns	
21*	TioF	Port output fall time	PIC16C65	_	10	25	ns	
			PIC16LC65	_		60	ns	
22††*	Tinp	RB0/INT pin high or low time	RB0/INT pin high or low time		_	—	ns	
23††*	Trbp	RB7:RB4 change int high or lov	v time	20	_	_	ns	

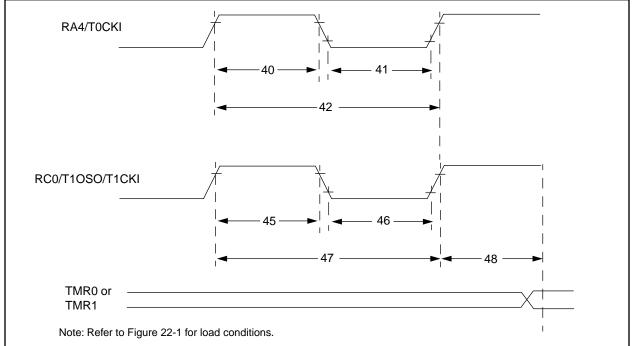
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


TABLE 22-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

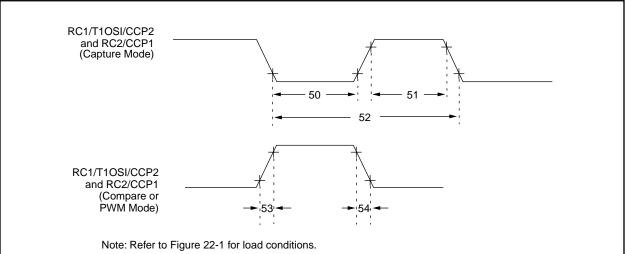
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	_	—	ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	—	—	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period or WDT reset	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low	—	—	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 22-5: TIMER0 AND TIMER1 CLOCK TIMINGS

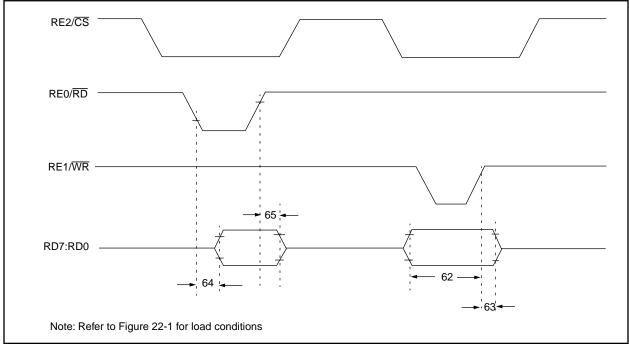
TABLE 22-5: TIMER0 AND TIMER1 CLOCK REQUIREMENTS


Param No.	Sym	Characteristic	:			Тур†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pu	lse Width	No Prescaler	0.5Tcy + 20	—		ns	
				With Prescaler	10	-	_	ns	-
41*	Tt0L	T0CKI Low Pul	se Width	No Prescaler	0.5Tcy + 20	-	_	ns	
				With Prescaler	10	-	_	ns	
42*	Tt0P	T0CKI Period			Greater of: 20 μs or <u>Tcy + 40</u> Ν	_	_		N = prescale value (1, 2, 4,, 256)
45*	Tt1H	T1CKI High	Synchronous,	No Prescaler	0.5TCY + 20	—	_	ns	
		Time	Synchronous,	PIC16C65	10	-	_	ns	-
			With Prescale	PIC16LC65	20	-	_	ns	-
			Asynchronous	6	2 Tcy	-	_	ns	
46*	Tt1L	T1CKI Low	Synchronous,	No Prescaler	0.5TCY + 20	-	_	ns	
		Time	Synchronous,		10	-	_	ns	
			With Prescale	PIC16LC65	20	-	_	ns	
			Asynchronous	6	2Tcy	-	_	ns	
47*	Tt1P	T1CKI input period	Synchronous		Greater of: 20 μs or <u>Tcy + 40</u> Ν	—			N = prescale value (1, 2, 4, 8)
			Asynchronous	3	Greater of: 20 μs or 4Tcγ	-		ns	
	Ft1		or input frequent		DC	-	200	kHz	
48	TCKEZtmr1	Delay from exte	ernal clock edge	to timer increment	2Tosc	-	7Tosc	—	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


TABLE 22-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

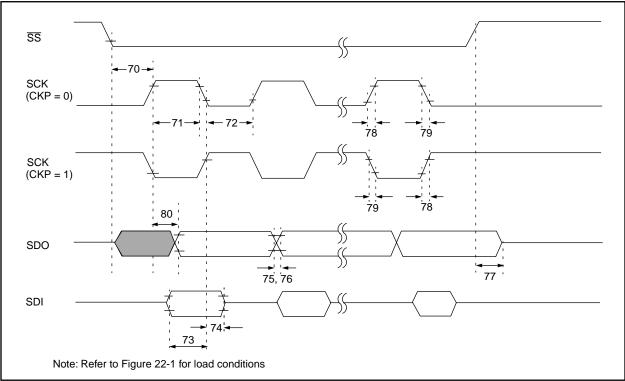
Parameter No.	Sym	Characteristic			Min	Тур†	Мах	Units	Conditions
50*	TccL		No Prescaler		0.5Tcy + 20	_		ns	
		input low time	With Prescaler	PIC16C65	10	—		ns	
				PIC16LC65	20	—		ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	-		ns	
		input high time	With Prescaler	PIC16C65	10	—	_	ns	
				PIC16LC65	20	—		ns	
52*	TccP	CCP1 and CCP2 ir	CCP1 and CCP2 input period					ns	N = prescale value (1,4, or 16)
53	TccR	CCP1 and CCP2 c	utput rise time	_	10	25	ns		
54	TccF	CCP1 and CCP2 c	utput fall time		_	10	25	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 22-7: PARALLEL SLAVE PORT TIMING

TABLE 22-7:PARALLEL SLAVE PORT REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setu	p time)	20	—	—	ns	
				25	—	_	ns	Automotive Range Only
63*	TwrH2dtl	\overline{WR} or \overline{CS} to data–in invalid (hold	PIC16C65	20	_	_	ns	
		time)	PIC16LC65	35	_	_	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid	·	—	_	80	ns	
					_	90	ns	Automotive Range Only
65	TrdH2dtl	\overline{RD} or \overline{CS} to data–out invalid		10	_	30	ns	

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

FIGURE 22-8: SPI MODE TIMING

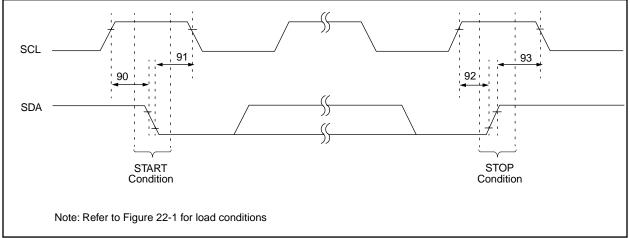


TABLE 22-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү	_	_	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20			ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	_	_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	_	_	ns	
75	TdoR	SDO data output rise time		10	25	ns	
76	TdoF	SDO data output fall time		10	25	ns	
77	TssH2doZ	$\overline{\text{SS}}\downarrow$ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)		10	25	ns	
79	TscF	SCK output fall time (master mode)		10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

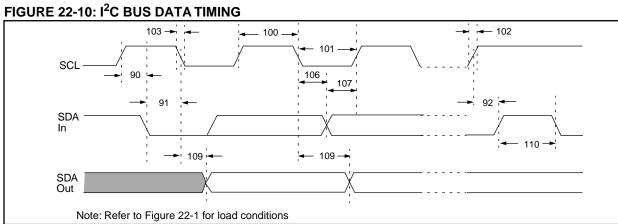
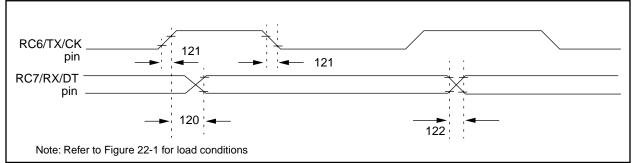

FIGURE 22-9: I²C BUS START/STOP BITS TIMING

TABLE 22-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600		—	113	condition
91	THD:STA	START condition	100 kHz mode	4000	—	—	ns	After this period the first clock
		Hold time	400 kHz mode	600	—	—	115	pulse is generated
92	TSU:STO	STOP condition	100 kHz mode	4700	—	—	ns	
		Setup time	400 kHz mode	600	—	—	115	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ns	
		Hold time	400 kHz mode	600	—	-	1 115	

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


TABLE 22-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	PIC16C65 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	PIC16C65 must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	-	μs	PIC16C65 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μs	PIC16C65 must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
102	Tr	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first cloc
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100	_	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	_	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

FIGURE 22-11: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

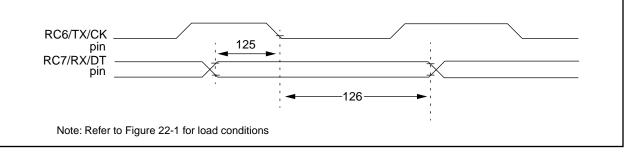


TABLE 22-11: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
120	tckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16C65	_	—	50	ns	
		Clock high to data out valid	PIC16LC65	_	—	100	ns	
121	tckrf	Clock out rise time and fall time	PIC16C65	_	—	25	ns	
		(Master Mode)	PIC16LC65	_	—	50	ns	
122	tdtrf	Data out rise time and fall time	PIC16C65	—	—	25	ns	
			PIC16LC65	_	—	50	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 22-12: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 22-12: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	tdtV2ckl	SYNC RCV (MASTER & SLAVE) Data hold before CK \downarrow (DT hold time)	15	_	_	ns	
126	tckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	—	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C65

NOT AVAILABLE AT THIS TIME

^{© 1996} Microchip Technology Inc.

NOTES:

24.0 ELECTRICAL CHARACTERISTICS FOR PIC16C63/65A

Absolute Maximum Ratings (†)

Ambient temperature under bias	55 to + 125 C
Storage temperature	65°C to + 150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	0.3V to (VDD +0.3V)
Voltage on VDD with respect to Vss	0 to + 7.5V
Voltage on MCLR with respect to Vss (Note 2)	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (V0 < 0 or V0 > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE ^(*) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE* (combined)	200 mA
Maximum current sunk by PORTC and PORTD ^(*) (combined)	200 mA
Maximum current sourced by PORTC and PORTD(*) (combined)	200 mA
* PORTD and PORTE not available on the PIC16C63.	

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD-VOH) x IOH} + Σ (VOI x IOL)
- **Note 2:** Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 24-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C63-04 PIC16C65A-04	PIC16C63-10 PIC16C65A-10	PIC16C63-20 PIC16C65A-20	PIC16LC63-04 PIC16LC65A-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 2.0 mA typ. at 3V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 2.0 mA typ. at 3V IPD: 0.9 μA typ. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V
	IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	IPD 1.5 μA typ. at 4.5V Freq: 10 MHz max.	IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.		IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

© 1996 Microchip Technology Inc.

24.1 DC CHARACTERISTICS: PIC16C63-04,PIC16C65A-04 (Commercial,Industrial,Automotive⁽⁶⁾) PIC16C63-10,PIC16C65A-10 (Commercial,Industrial,Automotive⁽⁶⁾) PIC16C63-20,PIC16C65A-20 (Commercial,Industrial,Automotive⁽⁶⁾)

DC CH		Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C $\leq TA \leq +125^{\circ}$ C for automotive, -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial							
Param No.	Characteristic	Sym	Min	Тур†		Units	Conditions		
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode		
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure Power-on Reset	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled		
			3.7	4.0	4.4	V	Automotive Range Only		
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC, osc configuration (PIC16C63/65A-04) FOSC = 4 MHz, $VDD = 5.5V$ (Note 4)		
D013			-	13.5	30	mA	HS osc configuration (PIC16C63/65A-20) Fosc = 20 MHz, VDD = 5.5V		
D015*	Brown-out Reset Current (Note 7)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V		
D020 D021 D021A D021B	Power-down Current (Note 3, 5)	IPD	- - -	10.5 1.5 1.5 2.5	42 21 24 24	μΑ μΑ μΑ μΑ	$VDD = 4.0V, WDT enabled, -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled}, -0^{\circ}C \text{ to } +70^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled}, -40^{\circ}C \text{ to } +85^{\circ}C$ $VDD = 4.0V, WDT \text{ disabled}, -40^{\circ}C \text{ to } +125^{\circ}C$		
D023*	Brown-out Reset Current (Note 7)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{\text{MCLR}}$ = VDD; WDT enabled/disabled as specified.

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: Automotive operating range is Advanced information for this device.
- 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

24.2 DC CHARACTERISTICS:PIC16LC63-04,PIC16LC65A-04 (Commercial,Industrial,Automotive⁽⁶⁾)

		Standa	rd Ope	rating	Condi	ions (u	Inless otherwise stated)
	RACTERISTICS	Operatir	ng temp	perature	-40	°C ≤	$TA \leq +125^{\circ}C$ for automotive,
DC CHA	RACTERISTICS				-40	°C ≤	$TA \leq +85^{\circ}C$ for industrial and
			_	$TA \leq +70^{\circ}C$ for commercial			
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	Device in SLEEP mode
D003	VDD start voltage to ensure Power-on Reset	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure Power-on Reset	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Automotive Range Only
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 7)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021	(Note 3, 5)		-	0.9	5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.9	5	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021B			-	0.9	10	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023*	Brown-out Reset Current (Note 7)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: Automotive operating range is Advanced information for this device.
- 7: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

24.3 DC CHARACTERISTICS: PIC16C63-04,PIC16C65A-04 (Commercial,Industrial,Automotive) PIC16C63-10,PIC16C65A-10 (Commercial,Industrial,Automotive) PIC16C63-20,PIC16C65A-20 (Commercial,Industrial,Automotive) PIC16LC63-04,PIC16LC65A-04 (Commercial,Industrial,Automotive)

		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for automotive,									
DC CHAR	ACTERISTICS		.g			°C :	\leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial				
		Operatii	ng voltag	e Vd	D range a	as desc	cribed in DC spec Section 24.1				
		and Section 24.2									
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions				
	Input Low Voltage			-							
	I/O ports	VIL									
D030	with TTL buffer		Vss	-	0.5V	v					
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v					
D032	MCLR, RA4/T0CKI, OSC1		Vss	-	0.2Vdd	V					
	(in RC mode)										
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1				
	Input High Voltage										
	I/O ports	VIH		-							
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$				
D040A			0.8Vdd	-	Vdd	V	For VDD > $5.5V$ or VDD < $4.5V$				
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range				
D042	MCLR RA4/T0CKI, RC7:RC4, RD7:RD4, RB0/INT, RE2:RE0		0.8VDD	-	Vdd	V					
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1				
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V					
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS				
	Input Leakage Current (Notes 2, 3)										
D060	I/O ports	lı∟	-	-	±1	μA	Vss ≤ VPIN ≤ VDD, Pin at hi- impedance				
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$				
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration				
	Output Low Voltage										
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C				
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C				
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	lOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C				
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C				

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

		Standard Operating Conditions (unless otherwise stated)							
		Operatir	ng tempe	ratur			\leq TA \leq +125°C for automotive,		
	ACTERISTICS			\leq TA \leq +85°C for industrial and					
DO ONAN					•		\leq TA \leq +70°C for commercial		
		Operatir	ng voltag	e VD	D range a	as desc	ribed in DC spec Section 24.1		
and Section 24.2									
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				†					
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С		
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C		
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С		
	Capacitive Loading Specs on Output Pins								
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.		
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF			
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF			

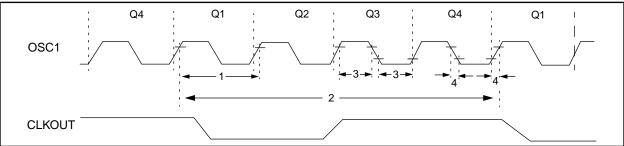
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A


24.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	ase letters and their meanings:	1	
S			
F	Fall	P	Period
H	High	R	Rise
	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st ((I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 2	24-1: LOAD CONDITIONS FOR DEVICE	TIMING SP	
	Load condition 1		Load condition 2
	VDD/2		
	9		
	RL		
		F	
			Vss
		= 464Ω	
	Vss CL	= 50 pF f	or all pins except OSC2/CLKOUT
Note 1.	PORTD and PORTE are not imple-		out including D and E outputs as ports
	mented on the PIC16C63.	15 pF f	or OSC2 output

24.5 <u>Timing Diagrams and Specifications</u>

FIGURE 24-2: EXTERNAL CLOCK TIMING

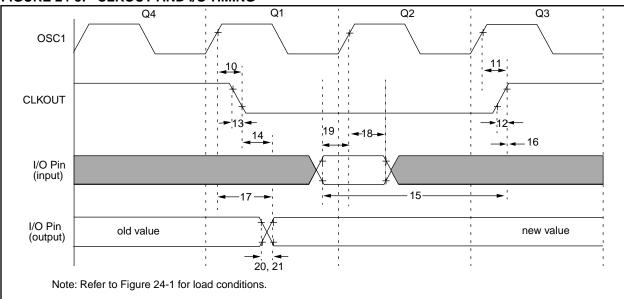


TABLE 24-2: EXTERNAL CLOCK TIMING REQUIREMENTS

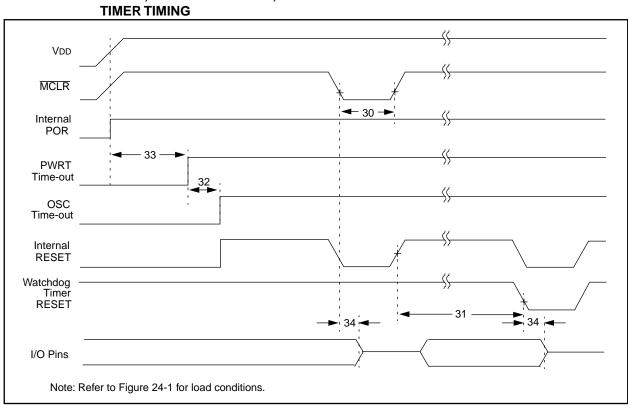
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (PIC16C63/65A-04,
			DC	—	20	MHz	HS osc mode (PIC16C63/65A-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	4	MHz	HS osc mode (PIC16C63/65A-04,
			4	—	10	MHz	HS osc mode (PIC16C63/65A-10)
			4	—	20	MHz	HS osc mode (PIC16C63/65A-20)
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)		—	—	ns	HS osc mode (PIC16C63/65A-04
			100	—	—	ns	HS osc mode (PIC16C63/65A-10
			50	—	—	ns	HS osc mode (PIC16C63/65A-20
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (PIC16C63/65A-04
			100	—	250	ns	HS osc mode (PIC16C63/65A-10
			50	—	250	ns	HS osc mode (PIC16C63/65A-20
			5		—	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	—	-	ns	XT oscillator
	TosH	Low Time	2	—	-	μs	LP oscillator
			20	—	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	-	—	25	ns	XT oscillator
	TosF	Fall Time	-	—	50	ns	LP oscillator
			-	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

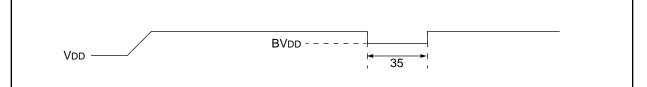
FIGURE 24-3: CLKOUT AND I/O TIMING

TABLE 24-3: CLKOUT	AND I/O TIMING	REQUIREMENTS
--------------------	----------------	--------------


Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 [↑] to CLKOUT↓			75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	3	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	3	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	-KOUT \downarrow to Port out valid		-	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	Port in valid before CLKOUT 1		-	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	-	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		_	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port in (I/O in hold time)	OSC1 [↑] (Q2 cycle) to Port input invalid		-	—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/	O in setup time)	0	-	_	ns	
20*	TioR	Port output rise time	PIC16C63/65A	_	10	40	ns	
			PIC16LC63/65A	_	-	80	ns	
21*	TioF	Port output fall time	PIC16C63/65A	_	10	40	ns	
			PIC16LC63/65A	_	-	80	ns	
22††*	Tinp	INT pin high or low time	•	Тсу	-	—	ns	
23††*	Trbp	RB7:RB4 change INT high c	RB4 change INT high or low time				ns	

These parameters are characterized but not tested.

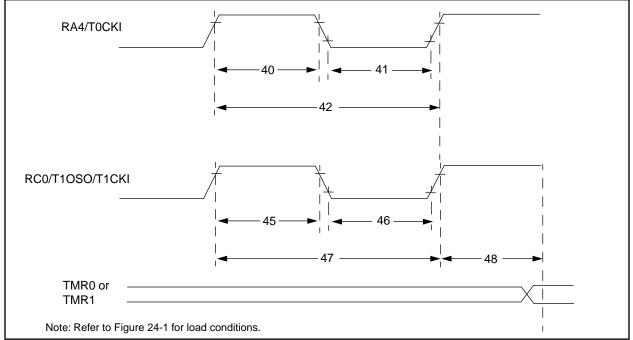
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.


t These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP

FIGURE 24-5: BROWN-OUT RESET TIMING


TABLE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

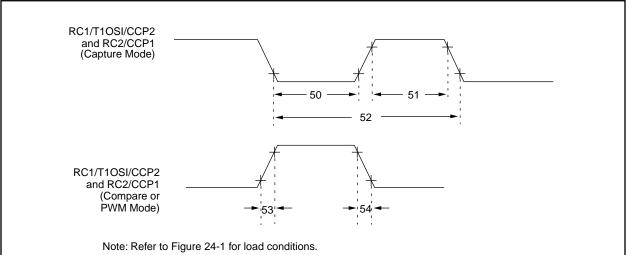
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc		-	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tioz	I/O Hi-impedance from MCLR Low or WDT reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—	_	μs	VDD ≤ B∨DD (D005)

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 24-6: TIMER0 AND TIMER1 CLOCK TIMINGS

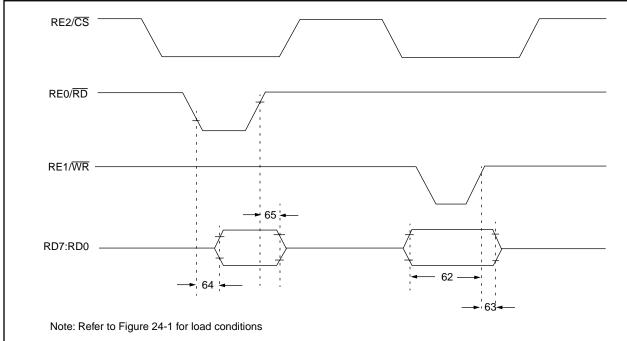
TABLE 24-5 :	TIMER0 AND TIMER1 CLOCK REQUIREMENTS
---------------------	--------------------------------------


Parameter No.	Sym	-		Min	Тур†	Мах	Units	Conditions	
40*	Tt0H	T0CKI High Pulse Width No Prescaler		No Prescaler	0.5Tcy + 20	-	-	ns	
				With Prescaler	10	—	—	ns	
41*	Tt0L	T0CKI Low Pulse Width No Prescaler With Prescaler		0.5TCY + 20	-	—	ns		
				With Prescaler	10	-	—	ns	
42*	Tt0P	P TOCKI Period		<u>TCY + 40</u>	-	—	ns	N = prescale value	
					N				(1, 2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, I	No Prescaler	0.5Tcy + 20	-	—	ns	
				PIC16C63/65A	10	—	_	ns	1
			With Prescaler	PIC16LC63/65A	20	—	-	ns	1
			Asynchronous		2Tcy	-	—	ns	
46*	Tt1L	T1CKI Low Time Synchronous, No Prescaler		No Prescaler	0.5Tcy + 20	-	—	ns	
				PIC16C63/65A	10	-	—	ns	
			With Prescaler	PIC16LC63/65A	20	—	—	ns	
			Asynchronous		2Tcy	—	_	ns	1
47*	Tt1P	T1CKI input period	Synchronous		<u>Tcy + 40</u> N	-		ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		4Tcy	-	—	ns	
	Ft1 Timer1 oscillator input frequency range (oscillator enabled by setting the T1OSC			DC	-	200	kHz		
48	TCKEZtmr1	Delay from externa	al clock edge to	timer increment	2Tosc	- 1	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

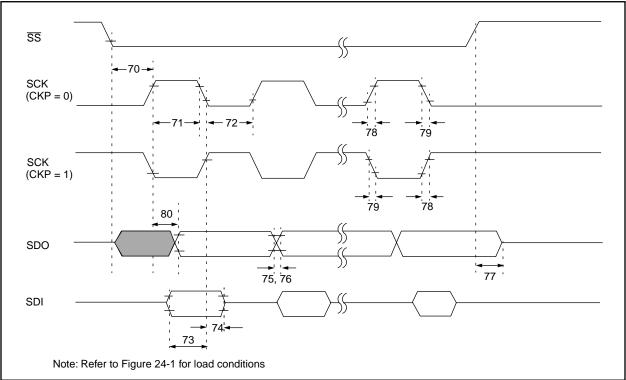

TABLE 24-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	-	_	ns	
		input low time	With Prescaler	PIC16C63/65A	10	-	_	ns	
				PIC16LC63/65A	20	-	_	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	-	_	ns	
		input high time	With Prescaler	PIC16C63/65A	10	-	_	ns	
				PIC16LC63/65A	20	-	_	ns	
52*	TccP	CCP1 and CCP2 ir	CCP1 and CCP2 input period				_	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 c	output rise time		_	10	25	ns	
54*	TccF	CCP1 and CCP2 output fall time PIC16C63/65A			_	10	25	ns	
				PIC16LC63/65A	—	-	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 24-7: PARALLEL SLAVE PORT REQUIREMENTS FOR THE PIC16C65A ONLY


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
62*	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup ti	a in valid before \overline{WR}^\uparrow or \overline{CS}^\uparrow (setup time)				ns	
				25	—	_	ns	Automotive Range Only
63*	TwrH2dtl	\overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data–in invalid (hold time)	PIC16C65A	20	_	_	ns	
			PIC16LC65A	35	—	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		_	—	80	ns	
				-	_	90	ns	Automotive Range Only
65*	TrdH2dtl	\overline{RD} for \overline{CS} for data-out invalid		10	_	30	ns	

Characterized but not tested

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

FIGURE 24-9: SPI MODE TIMING

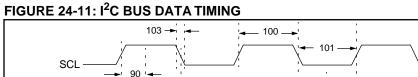

TABLE 24-8: SPI MODE REQUIREMENTS

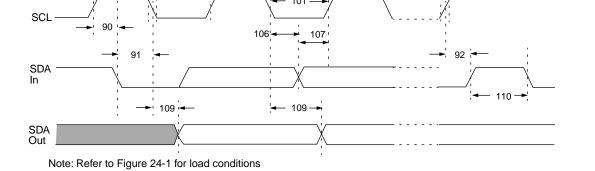
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{\text{SS}}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	_	_	ns	
71*	TscH	SCK input high time (slave mode)	TCY + 20	_		ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_		ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	_	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	_	—	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time	_	10	25	ns	
77*	TssH2doZ	$\overline{\text{SS}}\downarrow$ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

* Characterized but not tested

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 24-10: I²C BUS START/STOP BITS TIMING



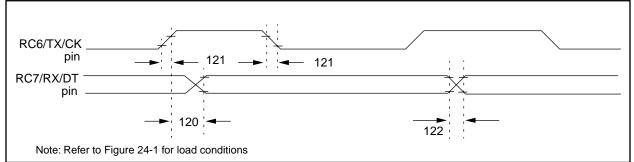

TABLE 24-9:	I ² C BUS START/STOP BITS REQUIREMENTS
-------------	---

TSU:STA	START condition	100 kHz mode	4700	_	—	20	Only relevant for repeated START
	Setup time	400 kHz mode	600		—	115	condition
THD:STA	START condition	100 kHz mode	4000	_	—	20	After this period the first clock
	Hold time	400 kHz mode	600	—	—	_ ns	pulse is generated
TSU:STO	STOP condition	100 kHz mode	4700	_	—		
	Setup time	400 kHz mode	600	_	—	ns	
THD:STO	STOP condition	100 kHz mode	4000	_	_		
	Hold time	400 kHz mode	600	_	_	ns	
T	THD:STA	Setup time "HD:STA START condition Hold time "SU:STO STOP condition Setup time "HD:STO STOP condition	Setup time 400 kHz mode HD:STA START condition Hold time 100 kHz mode SU:STO STOP condition Setup time 100 kHz mode HD:STO STOP condition Setup time 100 kHz mode HD:STO STOP condition Hold time 100 kHz mode	Setup time400 kHz mode600HD:STASTART condition Hold time100 kHz mode4000SU:STOSTOP condition Setup time100 kHz mode600HD:STOSTOP condition Hold time100 kHz mode600HD:STOSTOP condition Hold time100 kHz mode600HD:STOSTOP condition Hold time100 kHz mode600	Setup time400 kHz mode600HD:STASTART condition Hold time100 kHz mode4000GSU:STOSTOP condition Setup time100 kHz mode600HD:STOSTOP condition STOP condition 	Setup time 400 kHz mode 600 — THD:STA START condition Hold time 100 kHz mode 4000 — — SU:STO STOP condition Setup time 100 kHz mode 600 — — HD:STO STOP condition Setup time 100 kHz mode 600 — — HD:STO STOP condition Hold time 100 kHz mode 600 — — HD:STO STOP condition Hold time 100 kHz mode 600 — —	Setup time 400 kHz mode 600 — ms THD:STA START condition Hold time 100 kHz mode 4000 — — ns SU:STO STOP condition Setup time 100 kHz mode 600 — — ns THD:STA STOP condition Setup time 100 kHz mode 600 — — ns THD:STO STOP condition Hold time 100 kHz mode 600 — — ns THD:STO STOP condition Hold time 100 kHz mode 600 — — ns

102

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

TABLE 24-10: I²C BUS DATA REQUIREMENTS

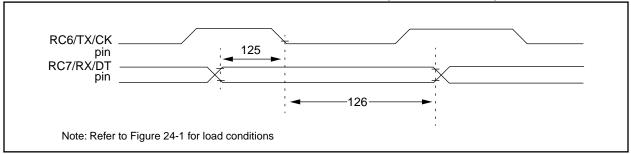

Parameter No.	Sym	Characteristic		Min	Мах	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	4.0	_	μs	PIC16C65A must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μs	PIC16C65A must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	PIC16C65A must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μs	PIC16C65A must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	At 125°C tested to 20 ns min.
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109*	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	_	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission car start
	Cb	Bus capacitive loading			400	pF	

* Characterized but not tested

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode I²C-bus device can be used in a standard-mode I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

FIGURE 24-12: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING


TABLE 24-11: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic	aracteristic			Мах	Units	Conditions
120* tckH2dtV SYNC XMIT (MASTER & SL		SYNC XMIT (MASTER & SLAVE)	PIC16C63/65A		—	50	ns	
		Clock high to data out valid	PIC16LC63/65A	_	—	100	ns	
121*	tckrf	Clock out rise time and fall time	PIC16C63/65A	_	—	25	ns	
		(Master Mode)	PIC16LC63/65A	_	—	50	ns	
122*	tdtrf	Data out rise time and fall time	PIC16C63/65A	—	—	25	ns	
		PIC16LC63/65A		_	—	50	ns	

Characterized but not tested

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not **†**: tested.

FIGURE 24-13: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 24-12: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

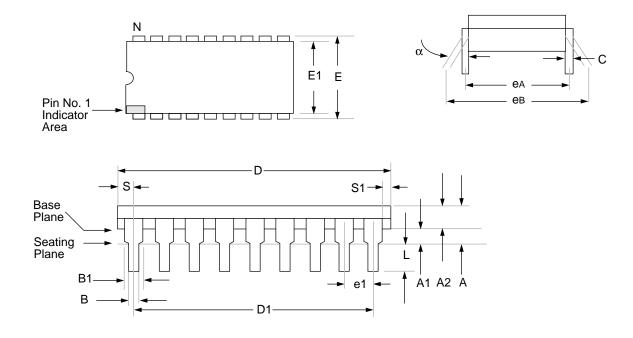
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125*	tdtV2ckl	$\frac{\text{SYNC RCV (MASTER \& SLAVE)}}{\text{Data hold before CK } (\text{DT hold time)}}$	15	_	_	ns	
126*	tckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—	_	ns	

Characterized but not tested

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 64 64A R64 65 65A

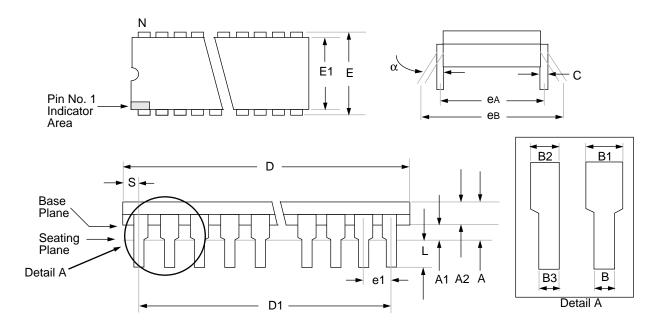
25.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C63/65A


NOT AVAILABLE AT THIS TIME

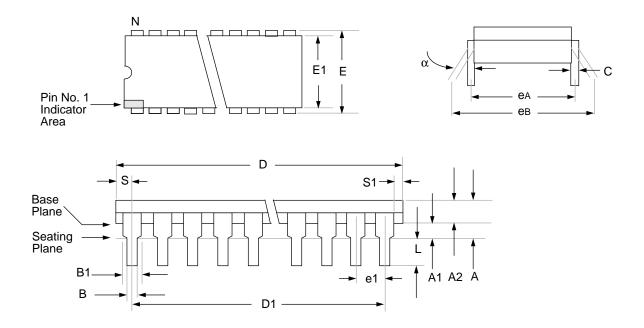
^{© 1996} Microchip Technology Inc.

NOTES:

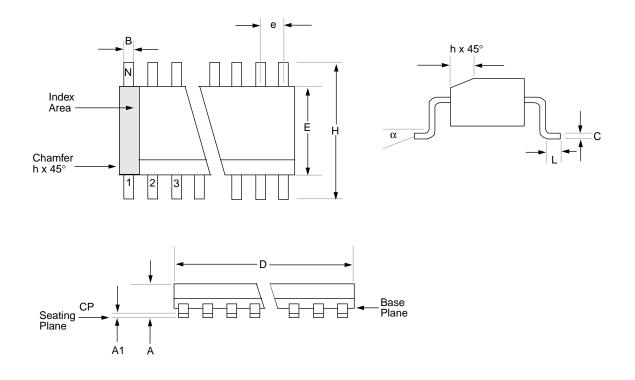
26.0 PACKAGING INFORMATION


26.1 <u>18-Lead Plastic Dual In-line (300 mil)</u>

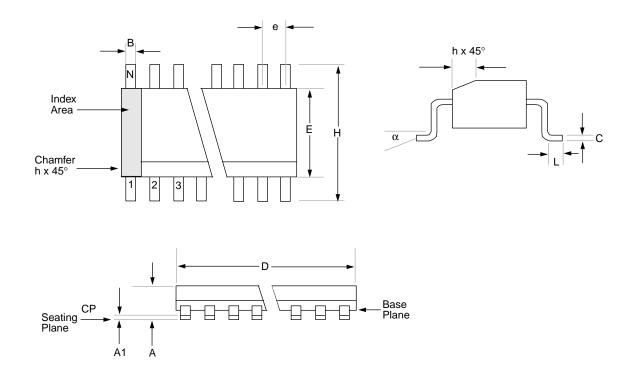
	Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches						
Symbol	Min	Мах	Notes	Min	Max	Notes				
α	0°	10°		0 °	10°					
А	_	4.064		_	0.160					
A1	0.381	_		0.015	-					
A2	3.048	3.810		0.120	0.150					
В	0.355	0.559		0.014	0.022					
B1	1.524	1.524	Reference	0.060	0.060	Reference				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	22.479	23.495		0.885	0.925					
D1	20.320	20.320	Reference	0.800	0.800	Reference				
E	7.620	8.255		0.300	0.325					
E1	6.096	7.112		0.240	0.280					
e1	2.489	2.591	Typical	0.098	0.102	Typical				
eA	7.620	7.620	Reference	0.300	0.300	Reference				
eB	7.874	9.906		0.310	0.390					
L	3.048	3.556		0.120	0.140					
Ν	18	18		18	18					
S	0.889	-		0.035	-					
S1	0.127	_		0.005	_					


© 1996 Microchip Technology Inc.

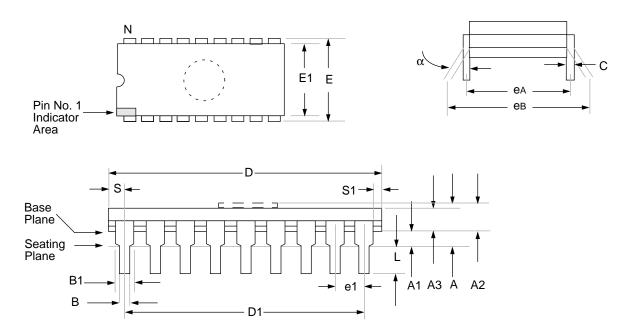
26.2 28-Lead Plastic Dual In-line (300 mil)


		Package Gro	up: Plastic Dual	In-Line (PLA)		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Мах	Notes
α	0°	10°		0°	10°	
А	3.632	4.572		0.143	0.180	
A1	0.381	_		0.015	_	
A2	3.175	3.556		0.125	0.140	
В	0.406	0.559		0.016	0.022	
B1	1.016	1.651	Typical	0.040	0.065	Typical
B2	0.762	1.016	4 places	0.030	0.040	4 places
B3	0.203	0.508	4 places	0.008	0.020	4 places
С	0.203	0.331	Typical	0.008	0.013	Typical
D	34.163	35.179		1.385	1.395	
D1	33.020	33.020	Reference	1.300	1.300	Reference
E	7.874	8.382		0.310	0.330	
E1	7.112	7.493		0.280	0.295	
e1	2.540	2.540	Typical	0.100	0.100	Typical
eA	7.874	7.874	Reference	0.310	0.310	Reference
eB	8.128	9.652		0.320	0.380	
L	3.175	3.683		0.125	0.145	
Ν	28	28		28	28	
S	0.584	1.220		0.023	0.048	

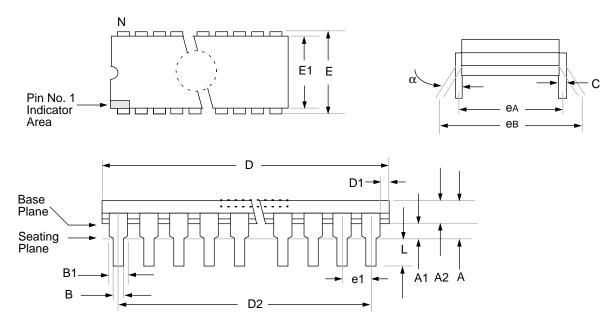
26.3 <u>40-Lead Plastic Dual In-line (600 mil)</u>


	Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
А	_	5.080		_	0.200					
A1	0.381	_		0.015	_					
A2	3.175	4.064		0.125	0.160					
В	0.355	0.559		0.014	0.022					
B1	1.270	1.778	Typical	0.050	0.070	Typical				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	51.181	52.197		2.015	2.055					
D1	48.260	48.260	Reference	1.900	1.900	Reference				
E	15.240	15.875		0.600	0.625					
E1	13.462	13.970		0.530	0.550					
e1	2.489	2.591	Typical	0.098	0.102	Typical				
eA	15.240	15.240	Reference	0.600	0.600	Reference				
eB	15.240	17.272		0.600	0.680					
L	2.921	3.683		0.115	0.145					
Ν	40	40		40	40					
S	1.270	-		0.050	-					
S1	0.508	_		0.020	_					

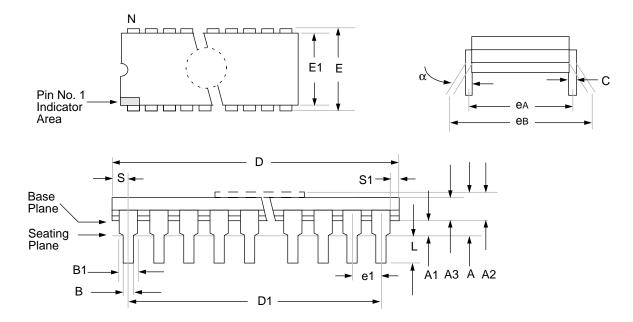
26.4 <u>18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)</u>

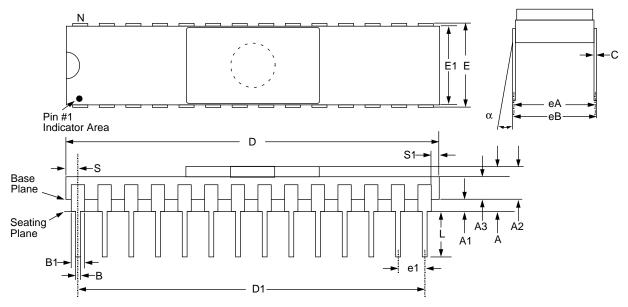

	Package Group: Plastic SOIC (SO)										
		Millimeters			Inches						
Symbol	Min	Мах	Notes	Min	Max	Notes					
α	0°	8 °		0°	8°						
А	2.362	2.642		0.093	0.104						
A1	0.101	0.300		0.004	0.012						
В	0.355	0.483		0.014	0.019						
С	0.241	0.318		0.009	0.013						
D	11.353	11.735		0.447	0.462						
E	7.416	7.595		0.292	0.299						
е	1.270	1.270	Reference	0.050	0.050	Reference					
Н	10.007	10.643		0.394	0.419						
h	0.381	0.762		0.015	0.030						
L	0.406	1.143		0.016	0.045						
Ν	18	18		18	18						
CP	-	0.102		—	0.004						

26.5 <u>28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)</u>


	Package Group: Plastic SOIC (SO)										
		Millimeters		Inches							
Symbol	Min	Max	Notes	Min	Max	Notes					
α	0°	8 °		0°	8°						
А	2.362	2.642		0.093	0.104						
A1	0.101	0.300		0.004	0.012						
В	0.355	0.483		0.014	0.019						
С	0.241	0.318		0.009	0.013						
D	17.703	18.085		0.697	0.712						
E	7.416	7.595		0.292	0.299						
е	1.270	1.270	Typical	0.050	0.050	Typical					
Н	10.007	10.643		0.394	0.419						
h	0.381	0.762		0.015	0.030						
L	0.406	1.143		0.016	0.045						
N	28	28		28	28						
CP	_	0.102		_	0.004						

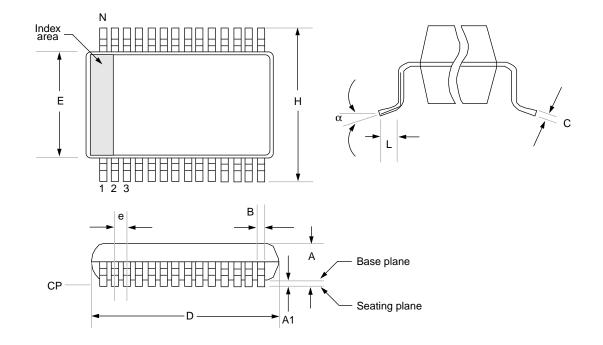
26.6 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil)


Package Group: Ceramic CERDIP Dual In-Line (CDP)										
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Мах	Notes				
α	0°	10°		0°	10°					
А	_	5.080			0.200					
A1	0.381	1.778		0.015	0.070					
A2	3.810	4.699		0.150	0.185					
A3	3.810	4.445		0.150	0.175					
В	0.355	0.585		0.014	0.023					
B1	1.270	1.651	Typical	0.050	0.065	Typical				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	22.352	23.622		0.880	0.930					
D1	20.320	20.320	Reference	0.800	0.800	Reference				
E	7.620	8.382		0.300	0.330					
E1	5.588	7.874		0.220	0.310					
e1	2.540	2.540	Reference	0.100	0.100	Reference				
eA	7.366	8.128	Typical	0.290	0.320	Typical				
eB	7.620	10.160		0.300	0.400					
L	3.175	3.810		0.125	0.150					
Ν	18	18		18	18					
S	0.508	1.397		0.020	0.055					
S1	0.381	1.270		0.015	0.050					

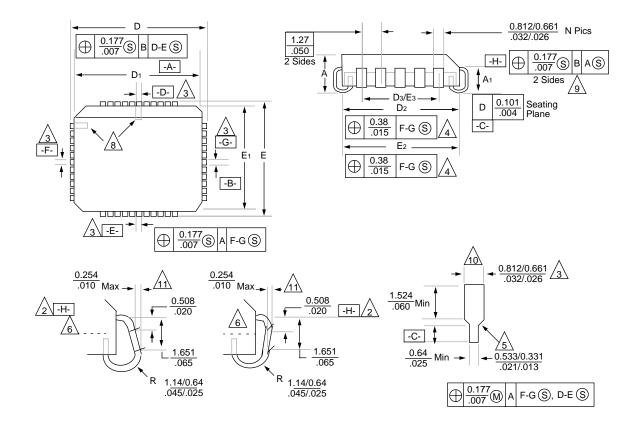


Package Group: Ceramic CERDIP Dual In-Line (CDP)								
Symbol	Millimeters			Inches				
	Min	Мах	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
А	3.30	5.84		.130	0.230			
A1	0.38	—		0.015	_			
A2	2.92	4.95		0.115	0.195			
В	0.35	0.58		0.014	0.023			
B1	1.14	1.78	Typical	0.045	0.070	Typical		
С	0.20	0.38	Typical	0.008	0.015	Typical		
D	34.54	37.72		1.360	1.485			
D2	32.97	33.07	Reference	1.298	1.302	Reference		
E	7.62	8.25		0.300	0.325			
E1	6.10	7.87		0.240	0.310			
е	2.54	2.54	Typical	0.100	0.100	Typical		
eA	7.62	7.62	Reference	0.300	0.300	Reference		
eB	_	11.43			0.450			
L	2.92	5.08		0.115	0.200			
Ν	28	28		28	28			
D1	0.13			0.005	_			

26.8 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil)


Package Group: Ceramic CERDIP Dual In-Line (CDP)									
	Millimeters			Inches					
Symbol	Min	Max	Notes	Min	Мах	Notes			
α	0°	10°		0°	10°				
А	4.318	5.715		0.170	0.225				
A1	0.381	1.778		0.015	0.070				
A2	3.810	4.699		0.150	0.185				
A3	3.810	4.445		0.150	0.175				
В	0.355	0.585		0.014	0.023				
B1	1.270	1.651	Typical	0.050	0.065	Typical			
С	0.203	0.381	Typical	0.008	0.015	Typical			
D	51.435	52.705		2.025	2.075				
D1	48.260	48.260	Reference	1.900	1.900	Reference			
Е	15.240	15.875		0.600	0.625				
E1	12.954	15.240		0.510	0.600				
e1	2.540	2.540	Reference	0.100	0.100	Reference			
eA	14.986	16.002	Typical	0.590	0.630	Typical			
eB	15.240	18.034		0.600	0.710				
L	3.175	3.810		0.125	0.150				
Ν	40	40		40	40				
S	1.016	2.286		0.040	0.090				
S1	0.381	1.778		0.015	0.070				

26.9 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)

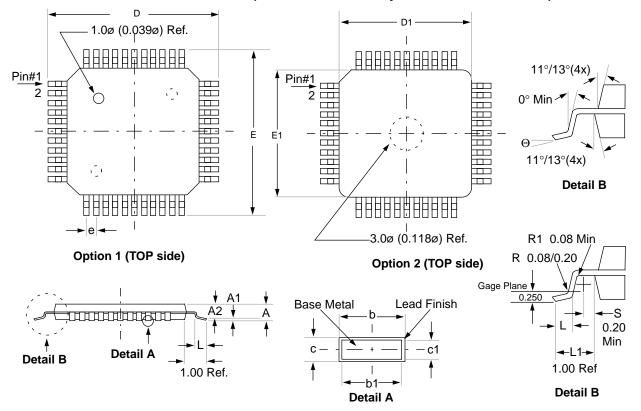

	Pack	age Group: Ce	ramic Side Braze	d Dual In-Line	(CER)	
O maked		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0 °	10°		0°	10°	
А	3.937	5.030		0.155	0.198	
A1	1.016	1.524		0.040	0.060	
A2	2.921	3.506		0.115	0.138	
A3	1.930	2.388		0.076	0.094	
В	0.406	0.508		0.016	0.020	
B1	1.219	1.321	Typical	0.048	0.052	
С	0.228	0.305	Typical	0.009	0.012	
D	35.204	35.916		1.386	1.414	
D1	32.893	33.147	Reference	1.295	1.305	
E	7.620	8.128		0.300	0.320	
E1	7.366	7.620		0.290	0.300	
e1	2.413	2.667	Typical	0.095	0.105	
eA	7.366	7.874	Reference	0.290	0.310	
eB	7.594	8.179		0.299	0.322	
L	3.302	4.064		0.130	0.160	
Ν	28	28		28	28	
S	1.143	1.397		0.045	0.055	
S1	0.533	0.737		0.021	0.029	

26.10 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)



		Packag	e Group: Plasti	c SSOP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	8°		0°	8°	
А	1.730	1.990		0.068	0.078	
A1	0.050	0.210		0.002	0.008	
В	0.250	0.380		0.010	0.015	
С	0.130	0.220		0.005	0.009	
D	10.070	10.330		0.396	0.407	
E	5.200	5.380		0.205	0.212	
е	0.650	0.650	Reference	0.026	0.026	Reference
Н	7.650	7.900		0.301	0.311	
L	0.550	0.950		0.022	0.037	
N	28	28		28	28	
CP	-	0.102		-	0.004	

26.11 44-Lead Plastic Leaded Chip Carrier (Square)

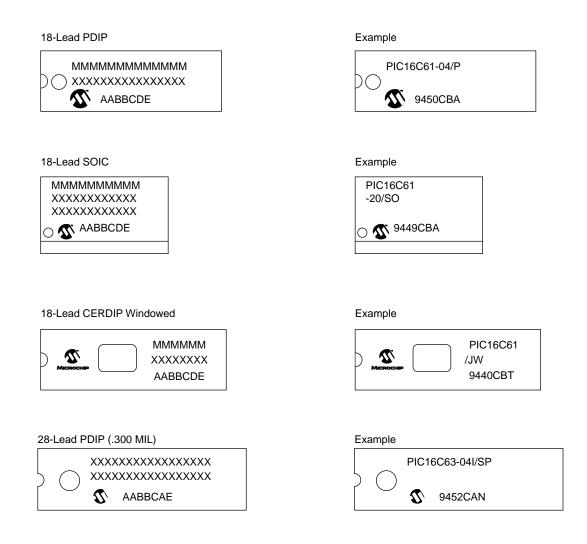


	Pa	ckage Group: F	Plastic Leaded C	hip Carrier (PL	CC)	
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
А	4.191	4.572		0.165	0.180	
A1	2.413	2.921		0.095	0.115	
D	17.399	17.653		0.685	0.695	
D1	16.510	16.663		0.650	0.656	
D2	15.494	16.002		0.610	0.630	
D3	12.700	12.700	Reference	0.500	0.500	Reference
E	17.399	17.653		0.685	0.695	
E1	16.510	16.663		0.650	0.656	
E2	15.494	16.002		0.610	0.630	
E3	12.700	12.700	Reference	0.500	0.500	Reference
N	44	44		44	44	
CP	_	0.102		_	0.004	
LT	0.203	0.381		0.008	0.015	

26.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form)

		Packag	ge Group: Plastic	: MQFP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	7 °		0°	7°	
А	2.000	2.350		0.078	0.093	
A1	0.050	0.250		0.002	0.010	
A2	1.950	2.100		0.768	0.083	
b	0.300	0.450	Typical	0.011	0.018	Typical
С	0.150	0.180		0.006	0.007	
D	12.950	13.450		0.510	0.530	
D1	9.900	10.100		0.390	0.398	
D3	8.000	8.000	Reference	0.315	0.315	Reference
E	12.950	13.450		0.510	0.530	
E1	9.900	10.100		0.390	0.398	
E3	8.000	8.000	Reference	0.315	0.315	Reference
е	0.800	0.800		0.031	0.032	
L	0.730	1.030		0.028	0.041	
N	44	44		44	44	
CP	0.102	-		0.004	-	

26.13 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form)

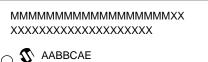

		Packag	e Group: Plast	ic TQFP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
A	1.00	1.20		0.039	0.047	
A1	0.05	0.15		0.002	0.006	
A2	0.95	1.05		0.037	0.041	
D	11.75	12.25		0.463	0.482	
D1	9.90	10.10		0.390	0.398	
E	11.75	12.25		0.463	0.482	
E1	9.90	10.10		0.390	0.398	
L	0.45	0.75		0.018	0.030	
е	0.80	BSC		0.031	BSC	
b	0.30	0.45		0.012	0.018	
b1	0.30	0.40		0.012	0.016	
С	0.09	0.20		0.004	0.008	
c1	0.09	0.16		0.004	0.006	
Ν	44	44		44	44	
Θ	0°	7 °		0°	7 °	

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.

3: This outline conforms to JEDEC MS-026.

26.14 Package Marking Information

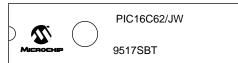


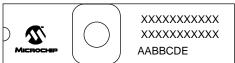
Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	C D1	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A. Mask revision number for microcontroller
	D_2	Mask revision number for EEPROM
	E	Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will b	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of naracters for customer specific information.

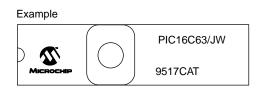
* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Cont'd)

28-Lead SOIC

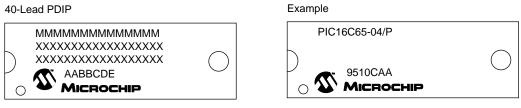

28-Lead CERDIP Skinny Windowed


Example PIC16C62-20/S0111

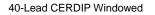

5 9515SBA

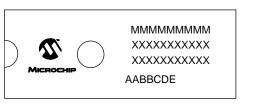
Example

28-Lead Side Brazed Skinny Windowed

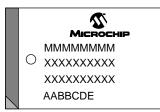


28-Lead SSOP

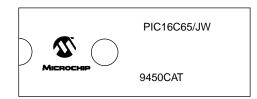

Example

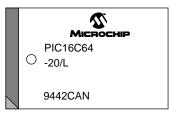


Legend:	MMM	Microchip part number information	
	XXX	Customer specific information*	
	AA	Year code (last 2 digits of calender year)	
	BB	Week code (week of January 1 is week '01')	
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.	
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.	
Note:	line, it will b	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of naracters for customer specific information.	


Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Cont'd)


44-Lead PLCC


44-Lead MQFP

Example

Example

44-Lead TQFP	Example
MMMMMMM XXXXXXXXX XXXXXXXXX	PIC16C64A -10/TQ
O AABBCDE	

Legend:	MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.	
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.	
Note:	line, it will t	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of naracters for customer specific information.	

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX A: MODIFICATIONS

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (192 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. Timer0 pin is also a port pin (RA4/T0CKI) now.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- 16. Power Control register (PCON) is added with a Power-on Reset status bit (POR).(Not on the PIC16C61).
- Brown-out Reset has been added to the following devices: PIC16C62A/R62/63/64A/R64/65A.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

APPENDIX C: WHAT'S NEW

The format of this data sheet has been changed to be consistent with other product families. This ensures that important topics are covered across all PIC16/17 families. Here is an overview list of new features:

- Added the following new devices:
 - PIC16C62
 - PIC16C62A
 - PIC16CR62
 - PIC16C63
 - PIC16C64A
 - PIC16CR64
 - PIC16C65A

A Brown-out Detect Enable Bit (BODEN) has been added to the Configuration Word register for PIC16C62A, PIC16CR62, PIC16C63, PIC16C64A, PIC16CR64, and the PIC16C65A.

A Brown-out Reset detect bit $(\overline{\text{BOR}})$ has been added to the PCON register (for the devices with brown-out detect circuitry).

A $\overline{\text{MCLR}}$ filter circuit has been added to minimize the influence of pin state changes to the $\overline{\text{MCLR}}$ line.

Changed low voltage specification for LC devices on the following parts to 2.5V:

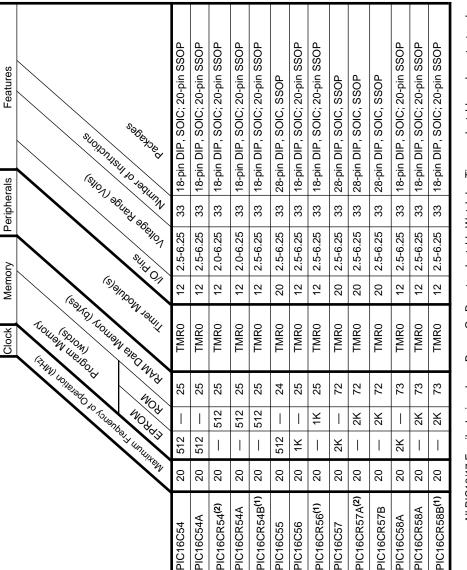
- PIC16C62
- PIC16C62A
- PIC16CR62
- PIC16C63
- PIC16C64A
- PIC16CR64
- PIC16C65A

APPENDIX D: WHAT'S CHANGED

All product and device family tables have been updated for the latest devices and specifications. Added information on ROM devices.

TX8/9 (TXSTA<6>) has been changed to TX9 - 9-bit Transmit Enable bit.

RC8/9 (RCSTA<6>) has been changed to RX9 - 9-bit Receive Enable bit.


RCD8 (RCSTA<0>) has been changed to RX9D.

TXD8 (TXSTA<0>) has been changed to TX9D.

© 1996 Microchip Technology Inc.

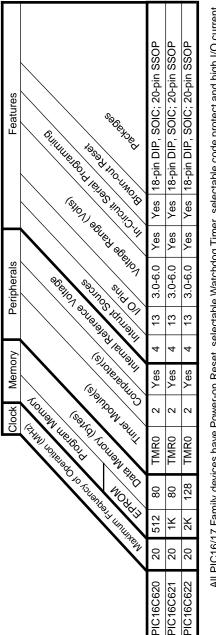
APPENDIX E: PIC16/17 MICROCONTROLLERS

TABLE E-1: PIC16C5X FAMILY OF DEVICES

· 1 T

1

N T 1


101

All PIC16/17 Family devices have Power-On Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. : Please contact your local sales office for availability of these devices.

Please contact your local sales office for availab
 Not recommended for new designs.

Note

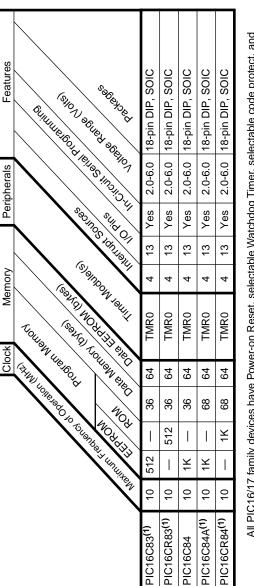
TABLE E-2:	PIC16C62X FAMILY OF DEVICES
------------	-----------------------------

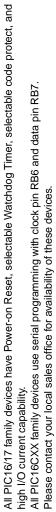
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7.

						Memory	ry			Peripherals	srals			Features
				¹ OHR IS CE	LOULON LE	$ \setminus \mathbf{N}$	LI ST		1100HA W	Sel Sol		\mathbf{N}		6.5.11.11.02
		N [‡]	Tou and		Say To	1ºIno	Collif	the start		40000	est out of the series	Jour of the second seco	S. Collar	
	No. 1	LUNUL	NO 4 AS	410,	N 181111		apriles	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A TRUE	idnitaj.		an an		Seened to Unit
PIC16C61	20	1K	Ι	36					e	13	3.0-6.0	Yes	Ι	18-pin DIP, SOIC
PIC16C62	20	2K		128	TMR0, TMR1, TMR2	-	SPI/I ² C		7	22	3.0-6.0	Yes	I	28-pin SDIP, SOIC, SSOP
PIC16C62A ⁽¹⁾	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	I	7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16CR62 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	~	SPI/I ² C	I	7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C63 ⁽¹⁾	20	4K		192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C64	20	2K		128	TMR0, TMR1, TMR2	-	SPI/I ² C	Yes	8	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C64A ⁽¹⁾	20	2K	I	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	8	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR64 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	8	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65	20	4K	I	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	11	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C65A ⁽¹⁾	20	4K		192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	11	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
All PI	C16/17	familv	' devic	es hav	e Power-on Res	et se	lectable V	Match	I DOD	ar c	electable c		rotect	All PIC16/17 family devices have Power-on Reset selectable Watchdon Timer selectable code protect and high I/O current capability

TABLE E-3: PIC16C6X FAMILY OF DEVICES

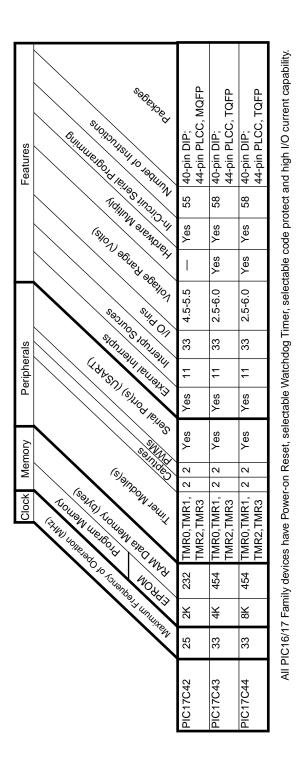
All PIC16/17 family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect, and high I/O current capability. All PIC16CXX family devices use serial programming with clock pin RB6 and data pin RB7. Please contact your local sales office for availability of these devices. Note 1:


				Clock		Memory			Peri	Peripherals	s	┢		Features
				LIGULE NILLE COL	TO			Telling State	Star S		Cualifies			Cullul Cull
		L'HALLAN	TOLONO CAL	Sandow Jahr	1700 X	A PACE AND A PARTICIPAL AND A PACE AND A PAC	etel of the second	The left	HO POLOS		1111 11111 11111 11111 11111 111111	es Colorse		2010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PIC16C710 ⁽¹⁾	20	512	36	TMR0		1		4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C71	20	ź	36	TMR0		I	1	4	4	13	3.0-6.0	Yes	I	18-pin DIP, SOIC
PIC16C711 ⁽¹⁾	20	,	68	TMR0		1	I	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C72 ⁽¹⁾	20	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	1	5	ω	52	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C73	20	44 A	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	1	ъ	1	22	3.0-6.0	Yes	1	28-pin SDIP, SOIC
PIC16C73A ⁽¹⁾	20	44 A	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	1	ъ	1	22	3.0-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C74	20	A4 X	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	ω	12	33	3.0-6.0	Yes		40-pin DIP; 44-pin PLCC, MQFP
PIC16C74A ⁽¹⁾	20	44 A	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	ω	12	33	3.0-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
AII PI	C16/1	7 Fami	ly devi	ces have Power-	ų	Reset, se	lectabl	e Watc	- gopy	Timer,	selectable	code	orotect	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capabil-


TABLE E-4: **PIC16C7X FAMILY OF DEVICES**

PIC16C6X

ity. All PIC16CXX Family devices use serial programming with clock pin RB6 and data pin RB7. Please contact your local sales office for availability of these devices.


÷ Note

Note 1:

TABLE E-6: PIC17CXX FAMILY OF DEVICES

E.1 **Pin Compatibility**

Devices that have the same package type and VDD, Vss and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC16C54, PIC16C54A, PIC16CR54, PIC16CR54A, PIC16CR54B, PIC16C56, PIC16CR56, PIC16C58A, PIC16CR58A, PIC16CR58B, PIC16C61, PIC16C620, PIC16C621, PIC16C622, PIC16C70, PIC16C71, PIC16C71A PIC16C83, PIC16CR83, PIC16C84, PIC16C84A, PIC16CR84	18 pin (20 pin)
PIC16C55, PIC16CR55, PIC16C57, PIC16CR57A, PIC16CR57B	28 pin
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73, PIC16C73A	28 pin
PIC16C64, PIC16CR64, PIC16C64A, PIC16C65, PIC16C65A, PIC16C74, PIC16C74A	40 pin
PIC17C42, PIC17C43, PIC17C44	40 pin

PIN COMPATIBLE DEVICES TABLE E-7:

INDEX

Α

Absolute Maximum Ratings 149, 171, 189, 2	
ALU Application Notes	
AN552	49
AN556	45
AN594	
Architectural Overview	9
Assembler	
B	-
_	
Baud Rate Formula	
Baud Rate Generator	
Baud Rates	
Asynchronous Mode	
Error, Calculating	
RX Pin Sampling, Timing Diagrams	
Sampling	
Synchronous Mode	
Block Diagrams	
Compare Mode	75
Crystal Oscillator, Ceramic Resonator	113
External Brown-out Protection	123
External Parallel Resonant Crystal Circuit	115
External Power-on Reset	123
External Series Resonant Crystal Circuit	115
In-circuit Programming Connections	
Interrupt Logic	
On-chip Reset Circuit	
Parallel Slave Port, PORTD-PORTE	57
PIC16C61	
PIC16C62	
PIC16C62A	
PIC16C63	
PIC16C64	
PIC16C64A	
PIC16C65	
PIC16C65A	
PIC16CR62	
PIC16CR64	
PORTC	
PORTD (I/O Mode)	
PORTE (I/O Mode)	
PWM	
RA3:RA0 pins	
RA4	
RA5 pin	
RB3:RB0 pins	
RB7:RB4 pins	
RC Oscillator Mode	
SPI Master/Slave Connection	
SSP, I ² C Mode	-
SSP, SPI Mode	
Timer0	
Timer0/WDT Prescaler	
Timer0/WDT Prescaler	
Timer1 Timer2	
USART Receive	
USART Transmit	-
Watchdog Timer	
BOR	119

С
C Compiler (MP-C)143, 147
Capture/Compare/PWM (CCP)
Capture Mode74
CCP1
CCP2
Compare Mode Block Diagram
Overview
Prescaler75
PWM Block Diagram76
PWM Mode76
PWM, Example Frequencies/Resolutions77
Section
Carry
CCP2CON
CCPR1H
CCPR1L
CCPR2H23, 25, 27, 29
CCPR2L
Clock Polarity, SPI Mode82
Clocking Scheme17
Code Examples
Changing Between Capture Prescalers75
Changing Prescaler (T0 to WDT)
Changing Prescaler (WDT to T0)
Ensuring Interrupts are Globally Disabled124 I ² C, Idle Mode93
I ² C, Receive Mode
I ² C, Transmit Mode
Indirect Addressing
Initializing PORTA47
Initializing PORTB49
Initializing PORTC51
Loading the SSPBUF Register81
Reading a 16-bit Free-running Timer69
Read-Modify-Write on an I/O Port
Saving Status and W Registers
Subroutine Call, Page0 to Page1
Computed GOTO
Configuration Bits
Configuration Word, Diagram
Connecting Two Microcontrollers
D
-
Data Memory Organization20
Section
Data Sheet
Compatibility
Modifications261
What's New262
DC CHARACTERISTICS150, 172, 210, 228
DC Characteristics
Development Support
Development Systems
Development Tools
Device Drawings 18-Lead Ceramic CERDIP Dual In-line
with Window (300 mil)250
18-Lead Plastic Dual In-line (300 mil)245
18-Lead Plastic Surface Mount
(SOIC - Wide, 300 mil Body)
28-Lead Ceramic CERDIP Dual In-line with Window (300
mil)251

:	8-Lead Ceramic Side Brazed Dual In-Line	
	vith Window (300 mil)253	
	28-Lead Plastic Dual In-line (300 mil)	;
	28-Lead Plastic Surface Mount	
	SOIC - Wide, 300 mil Body))
	28-Lead Plastic Surface Mount	
	SSOP - 209 mil Body 5.30 mm)	ł
	0-Lead Ceramic CERDIP Dual In-line	,
	vith Window (600 mil)252 l0-Lead Plastic Dual In-line (600 mil)	,
	4-Lead Plastic Leaded Chip Carrier (Square)	
	4-Lead Plastic Surface Mount (MQFP	'
	0x10 mm Body 1.6/0.15 mm Lead Form) 256, 257	,
	Carry	
	Addressing	
	nic Data Exchange (DDE)143	
É		
_	ical Characteristics 140, 171, 190, 200, 207	,
	ical Characteristics149, 171, 189, 209, 227	
F		
Famil	y of Devices	
	PIC16C5X	
	PIC16C62X	
	PIC16C6X6, 265	
	PIC16C7X	
	PIC16C8X	
	PIC17CXX	
Fuzzy	Logic Dev. System (fuzzyTECH®-MP)143, 147	
G		
-		
Gene	al Purpose Registers)
	ral Purpose Registers	
Grapi I	s, PIC16C61)
Grapi I I/O Po	rts, Section)
Grapi I I/O Po I ² C -	ns, PIC16C61	,
Grapi I/O Po I ² C - ID Lo	orts, Section) ,
Grapi I/O Po I ² C - ID Lo In-cire	orts, Section))
Grapi I/O Po I ² C - ID Lo In-ciro INDF	as, PIC16C61 159 orts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 23, 25, 27, 29 29)))
Grapi	as, PIC16C61 159 orts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 uit Serial Programming 130 catdressing 46	
Grapi I/O Po I ² C - ID Lo In-circ INDF Indire Instru	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 uit Serial Programming 130 catdressing 46 ction Cycle 17	
Grapi I/O Po I ² C - ID Lo In-circ INDF Indire Instru	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 cuit Serial Programming 130 ct Addressing 46 ction Cycle 17 ction Flow/Pipelining 17	
Grapi	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 uit Serial Programming 130 catdressing 46 ction Cycle 17	
Grapi	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131	
Grapi I/O Po I ² C - ID Lo In-circ INDF Indire Instru Instru Instru	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ctore Could and the series 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 131	
Graph I/O Po I ² C - ID Lo In-circ INDF Indire Instru Instru Instru	as, PIC16C61 159 ports, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133	
Graph I/O Po I ² C - ID Lo In-circ INDF Indire Instru Instru Instru	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133)))))))) 3333
Graph I/O Po I ² C - ID Lo In-circ INDF Indire Instru Instru Instru	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 NDLW 133	
Graph I/O Pe I ² C - ID Lo In-circ INDF Indire Instru Instru Instru	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Set 131 ADDLW 133 ADDWF 133 ANDLW 133 ANDWF 133))))))) 3333334
Graph I/O Pr I ² C - ID Lo In-cirr INDF Indire Instru Instru Instru	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ANDLW 133 SCF 134	
Graph I/O Pic I/C ID Lo In-cirru INDF Instru Instru Instru	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Set 131 ADDLW 133 ADDWF 133 ANDWF 133 SCF 134 SSF 134	
Graph I/O Pic I/C - ID Lo In-Cirrat INDF Instru Instru Instru	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDULW 133 ANDLW 133 SARF 134 SF 134 SFFSC 134 STFSS 135 CALL 135	
Graph I/O Pic I/C - ID Lo In-Cirrat INDF Instru Instru Instru	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ANDLW 133 SGF 134 SF 134 SFFSS 135 CALL 135	
Graph I/O Pic I/C - ID Lo In-Cirrat INDF Instru Instru Instru	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 131 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDUW 133 ANDLW 133 SARF 134 SF 134 SFFSS 135 CALL 135 CLRW 135	
Graph I/O Pic I/C - ID Lo In-cirret INDF Instruu Instruu Instruu Instruu	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ANDLW 133 SAF 134 SF 134 SF 134 STFSC 134 STFSS 135 CLRF 135 CLRWDT 136	
Graph I/O Pic I/C - ID Lo In-Cirret INDF Instruu Instruu Instruu Instruu Instruu Instruu	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 cuit Addressing 46 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 NDLW 133 SANDWF 133 SASF 134 STFSC 134 STFSS 135 CLRW 135 CLRWDT 136 COMF 136	
Grapi I/O Pic I ² C - ID Loo In-cirre INDF Instru Instru Instru Instru I Instru I Instru I I I I I I I I I I I I I I I I I I I	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ADDWF 133 SNDLW 133 SAFF. 134 STFSC 134 STFSS 135 CLRW 135 CLRWDT 136 CDMF 136 CDCF 136 CLRW 136	
Grapi I/O Pic I ² C - ID Loo In-cirre INDF Instru Instru Instru Instru I Instru I Instru I I I I I I I I I I I I I I I I I I I	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ADDLW 133 ADDWF 133 ANDLW 133 SNDWF 133 SSF 134 STFSC 134 STFSS 135 CLRW 135 CLRWDT 136 CDECF 136 DECFSZ 136	
Graph I/O Pic I ² C - ID Loo In-cirre INDF Instru I	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 23, 25, 27, 29 ction Cycle 17 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ADDWF 133 SADDWF 133 SADDWF 133 SADDWF 133 SADLW 134 SF 134 SF 134 STFSS 13	
Graph I/O Pri I/C Pri I/C - I/C - I/	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 23, 25, 27, 29 ction Cycle 17 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ADDWF 133 SSF 134 SFFSS 134 STFSS 134 STFSS 135 CLRW 135 CLRW 136 OPECF 136 OPECF 136 OPECFSZ 136 OPECF 136 OPECF 136 OPECF 136 OPECF 136 OPECF 1	
Graph I/O Pri I/C Pri I/C - I/C - I/	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ADDWF 133 SADDWF 133 SADDWF 133 SADLW 135 Call 134 STFSS 135 Call 136 CALL 136	
Graph I/O Pri I/C Pri I/C - I/C - I/	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cations 130 cuit Serial Programming 130 cuit Serial Programming 130 cuit Serial Programming 130 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ADDWF 133 SADDWF 133 SADDWF 133 SADLW 134 STFSS 134 STFSS 135 CLRW 136	
Graph I/O Pri I/O P	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 131 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ADDWF 133 ANDLW 133 SARF 134 SFS 134 STFSC 134 STFSS 135 CLRW 135 CLRW 136 CLRWDT 136 DECF 136 DECFSZ 136 ORLW 137 ORLW 137 ORWF 137 ORWF 137	
Graph I/O Pri I/O P	as, PIC16C61 159 prts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 131 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ADDWF 133 SANDWF 133 SGF 134 SSF 134 SSF 134 STFSS 135 CLRW 135 CLRW 136 CDECF 136 OCMF 136 OCMF 136 OCOMF 136 OCOMF 136 OCMF 137 OCFSZ 137 ORLW 137 ORVF 138 MOVF 138	
Graph I/O Pat I/O P	as, PIC16C61 159 brts, Section 47 See Synchronous Serial Port (SSP) 130 cations 130 cuit Serial Programming 131 ction Cycle 17 ction Flow/Pipelining 17 ction Format 131 ction Set 133 ADDLW 133 ADDWF 133 ANDLW 133 SARF 134 SFS 134 STFSC 134 STFSS 135 CLRW 135 CLRW 136 CLRWDT 136 DECF 136 DECFSZ 136 ORLW 137 ORLW 137 ORWF 137 ORWF 137	

	NOP	· · · · · · · · · · · · ·	139
	OPTION	·	139
	RETFIE	·	139
	RETLW	· · · · · · · · · · · · ·	139
	RETURN		
	RLF	· · · · · · · · · · · · ·	140
	RRF		
	SLEEP		
	SUBLW		
	SUBWF		
	SWAPF		
	TRIS		
	XORLW		
	XORWF		
	Section		
	Summary Table		
	CON 23, 24, 25, 26, 27, 2		
	-IC Bus		
	rrupt on Change Feature		49
Inter	rrupts		
	Context Saving		
	Port RB		
	RB0/INT	50, 1	126
	RB0/INT Timing Diagram	····· ·	126
	Timer0		61
	Timer0, Timing		62
	Timing Diagram, Wake-up from SLEEP		
	TMR0		
	Wake-up from SLEEP		
	Section		
1			
-			
Load	ding the Program Counter		45
М			
IVI			
	SMAssembler	1/3	1/6
MPA	ASM Assembler		
MPA MP-	C C Compiler	····· ·	147
MPA MP- MPS		····· ·	147
MPA MP-	C C Compiler	····· ·	147
MPA MP- MPS O	C C Compiler SIM Software Simulator	. 143, 1	147 147
MPA MP- MPS One	C C Compiler SIM Software Simulator -Time-Programmable Devices	. 143, 1	147 147 7
MPA MP- MPS One OPC	C C Compiler SIM Software Simulator -Time-Programmable Devices CODE	. 143, 1	147 147 7 131
MPA MP- MPS One OPC OPT	C C Compiler SIM Software Simulator -Time-Programmable Devices CODE	. 143, ⁻ . 26, 28,	147 147 7 131 , 30
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator -Time-Programmable Devices CODE 	. 143, ⁻ . 26, 28,	147 147 7 131 , 30
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator -Time-Programmable Devices CODE	. 143, - . 143, -	147 147 7 131 , 30 117
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator -Time-Programmable Devices CODE	. 143, . 26, 28, . 111, /stal	147 147 7 131 , 30 117
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, ⁻ 26, 28, . 111, ⁻ /stal	147 147 7 131 , 30 1117 1115 . 69
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal .	147 147 7 131 , 30 117 115 . 69 113
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal	147 147 7 131 , 30 117 115 . 69 113 115
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113,	147 147 7 131 , 30 117 115 113 115 118
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113,	147 147 7 131 , 30 117 115 115 118
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113,	147 147 7 131 , 30 117 115 115 115 118 118
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113,	147 147 7 131 . 30 117 115 . 69 113 115 118 118 115
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113,	147 147 7 131 . 30 117 115 . 69 113 115 118 118 115
MPA MP- MPS One OPC OPT Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113,	147 147 7 131 . 30 117 115 . 69 113 115 118 118 115
MPA MP-I MPS O One OPC OPT Osci Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113,	147 147 7 131 . 30 117 115 . 69 113 115 118 118 118 115 115
MPA MP-I MPS O One OPC OPT Osci Osci Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113,	147 147 7 131 . 30 117 115 . 69 113 115 118 118 118 115 115
MPA MP-I MPS O One OPC OPT Osci Osci Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, 111, /stal . . 113, . 113, . 113,	147 147 7 131 . 30 117 . 69 113 115 118 118 118 115 115 115 245
MPA MP-I MPS O One OPC OPT Osci Osci Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113,	147 147 7 131 , 30 117 115 69 113 115 115 115 115 115 115 53
MPA MP-I MPS O One OPC OPT Osci Osci Osci	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113, . 113,	147 147 7 131 . 30 117 115 . 69 113 115 115 115 115 115 . 53 . 53 . 57
MPA MP-I MPS O One OPC OPT Osci Osci Osci Osci Para	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, 111, /stal . . 113, . 113, . 28, 29,	147 147 1147 1117 1115 1115 1115 1115 11
MPA MP-I MPS O One OPC OPT Osci Osci Osci Osci Para Para PCL	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, 111, /stal . . 113, . 113, . 113, 28, 29, 28, 29, 28, 29,	147 147 131 131 130 117 115 115 113 115 113 115 113 115 113 115 115
MPA MP-I MPS O One OPC OPT Osci Osci Osci Osci Prese Pace Para PCL PCC	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, 111, /stal . . 113, . 113, . 113, 28, 29, 28, 29, 28, 29, 26, 28,	147 147 131 131 131 115 113 115 113 115 113 115 113 115 113 115 113 115 115
P P P C C C C C C C C C C C C C C C C C	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, 111, /stal . . 113, . 113, . 113, . 28, 29, 28, 29, 28, 29, 26, 28,	147 147 131 131 115 69 113 115 115 115 115 115 115 115 115 115
MPA MP-I MPS O One OPC OPT Osci Osci Osci Osci Osci Pacl Pacl Pacl PCL PCL PCL PCL PCL	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, 111, /stal . . 113, . 113, . 113, . 28, 29, 28, 29, 29, 29, 29, 29, 20,	147 147 131 131 115 115 115 115 115 115 115 115
MPA MP-I MPS O One OPC OPT Osci Osci Osci Osci Osci Prose Pack Pack Pack Pack Picc Picc Picc Picc	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, 111, /stal . . 113, . 113, . 113, . 113, . 28, 29, 28, 29, 28, 29, 28, 29, 26, 28, . 143, . 143,	147 147 131 131 115 69 113 115 69 113 115 115 115 115 115 115 115 115 115
P PCL PCC PD PICI PICI PICI	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, 111, /stal . . 113, . 113, . 113, . 113, . 28, 29, 28, 29, 28, 29, 28, 29, 28, 29, 28, 29, 26, 28, . 143,	147 147 131 131 115 115 115 115 115 115 115 115
P PCLL PCC PCC PCC PCC PCC PCC PCC PCC P	C C Compiler SIM Software Simulator CODE	. 143, 26, 28, . 111, /stal . . 113, . 113, . 113, . 28, 29, 28, 29, 28, 29, 28, 29, 26, 28, . 143, . 143, . 143,	147 147 147 131 300 117 115 300 117 115 113 115 113 115

PIC16C6X

PIE1 PIE2 Pin Compatible Devices	24	, 26,	28, 30
Pin Functions			209
MCLR/VPP			15
OSC1/CLKIN			
OSC2/CLKOUT			
PORTA			
PORTB			
PORTC			
PORTD			
PORTE			
RA4/T0CKI			,
RA5/SS			
RB0/INT RB6			
RВ0 RB7			
RC0/T1OSI/T1CKI			
RC0/T1OS0/T1CKI			
RC1/T10SI			
RC1/T1OSI/CCP2			
RC1/T10SO			
RC2/CCP1		15,	51, 52
RC3/SCK/SCL		15,	51, 52
RC4/SDI/SDA		15,	51, 52
RC5/SDO		15,	51, 52
RC6/TX/CK 15,			
RC7/RX/DT 15,	51,	52, 9	5–109
RD7/PSP7:RD0/PSP0			
RE0/RD			
RE1/WR			,
RE2/CS		- ,	, -
SCK			
SDI SDO			
<u>SDO</u>			
VDD			
Vss			
PIR1			
PIR2			
POP		· · · · ·	45
POR			
Time-Out Sequence on Power-Up			
POR			119
Port RB Interrupt			
PORTA			
PORTB			-
PORTC			-
PORTD			
PORTE	23	, 25,	27, 29
Ports Pi directional			FG
Bi-directional I/O Programming Considerations			
PORTA			
PORTB			
PORTC			-
PORTD			
PORTE			
Successive Operations on an I/O Port			56
Power-down Mode			129
Power-on Reset (POR)			
Power-up Timer (PWRT)			
PR2			
Prescaler			
PRO MATE™ Universal Programmer		14	3, 145
Program Memory			
Мар			19

Organization	19
Paging	
Section Programming while In-circuit	
PUSH	
Q	
Quadrature Clocks	17
Quick-Turnaround-Production	7
R	
RBPU RC Oscillator	
RCREG	
RCSTA	
Registers CCP1CON	
Diagram	
Section	74
Summary	23, 25, 27, 29
CCP2CON Diagram	74
Section	
Summary	25, 29
CCPR1H Summary	
CCPR1L	
Summary	23, 25, 27, 29
CCPR2H Summary	
CCPR2L	
Summary	25, 29
FSR Indirect Addressing	46
Summary	
INDF	
Indirect Addressing Summary	
INTCON	23, 25, 27, 29
Diagram	
Section Summary	
OPTION	23, 25, 27, 29
Diagram	32
Section	
Summary PCL	24, 26, 28, 30
Section	
Summary	23, 25, 27, 29
PCLATH Section	45
Summary	
PCON	
Diagram Section	
Summary	
PIE1	07
Diagram Section	
Summary	
PIE2	10
Diagram Section	
Summary	
PIR1	
Diagram Section	
Summary	

Diagram	
	13
Section 4	
Summary	29
PORTA	
Section	
Summary23, 25, 27, 2	29
PORTB	
Section	49
Summary	29
	-0
PORTC	
Section5	51
Summary	
	29
PORTD	
Section5	53
Summary27, 2	29
PORTE	
Section	54
Summary27, 2	29
PR2	
Summary	20
	50
RCREG	
Summary25, 2	29
RCSTA	
Diagram	96
Summary	
	20
SPBRG	
Summary	30
SSPBUF	
Section 8	31
Summary23, 25, 27, 2	29
	-0
SSPCON	
Diagram	30
Summary	
	29
SSPSR	
Section	31
SSPSTAT	
Diagram7	79
Section	79
Summary24, 26, 28, 3	30
STATUS	
Diagram	24
Section	31
Summary	29
T1CON	5
Diagram	37
Diagram6	57
5	
Section6	67
Section	67
Section6	67
Section	67 29
Section	67 29 71
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7	57 29 71 71
Section	57 29 71 71
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2	57 29 71 71
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 7	67 29 71 71 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2	67 29 71 71 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 7	67 29 71 71 29
Section	67 29 71 71 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H Summary Summary 23, 25, 27, 2	67 29 71 71 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1L 23, 25, 27, 2	57 29 71 71 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1L 23, 25, 27, 2	57 29 71 71 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1L Summary Summary 23, 25, 27, 2	57 29 71 71 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1L 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR2 23, 25, 27, 2	57 29 71 71 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1L 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR2 23, 25, 27, 2	57 29 71 71 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR2 Summary Summary 23, 25, 27, 2	57 29 71 71 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1L 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR2 Summary Summary 23, 25, 27, 2 TMR2 Summary Summary 23, 25, 27, 2 TRISA 23, 25, 27, 2	57 29 71 71 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1H 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR2 Summary Summary 23, 25, 27, 2	57 29 71 71 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L Summary Summary 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR2 Summary Summary 23, 25, 27, 2 TRISA Section	57 29 71 29 29 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L Summary Summary 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR2 Summary Summary 23, 25, 27, 2 TRISA Section Summary 23, 25, 27, 2 TRISA Section Summary 23, 25, 27, 2	57 29 71 29 29 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1H 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L Summary Summary 23, 25, 27, 2 TMR2 3 Summary 23, 25, 27, 2 TRISA Section Summary 23, 25, 27, 2 TRISB 24, 26, 28, 3	67 29 71 29 29 29 29 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 TMR1H 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L Summary Summary 23, 25, 27, 2 TMR1L 23, 25, 27, 2 TMR2 Summary Summary 23, 25, 27, 2 TRISA Section Summary 23, 25, 27, 2 TRISA Section Summary 23, 25, 27, 2	67 29 71 29 29 29 29 29 29 29 29
Section 6 Summary 23, 25, 27, 2 T2CON 7 Diagram 7 Section 7 Summary 23, 25, 27, 2 TMR0 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1H 23, 25, 27, 2 Summary 23, 25, 27, 2 TMR1L Summary Summary 23, 25, 27, 2 TMR2 3 Summary 23, 25, 27, 2 TRISA Section Summary 23, 25, 27, 2 TRISB 24, 26, 28, 3	57 29 71 29 29 29 29 29 29 29 29 29 29 29 29 29

TRISC	
Section	51
Summary 24, 26, 28,	
TRISD	
Section	53
Summary	
TRISE	
Diagram	54
Section	
Summary	
TXREG	00
Summary	29
TXSTA	20
Diagram	95
Section	
Summary	
W	
Special Function Registers, Initialization Conditions	
Special Function Registers, Reset Conditions	
Special Function Registers, Reset Conditions Special Function Register Summary	
File Maps	
Resets	
RP0 bit	20
S	
SCI - See Universal Synchronous Asynchronous Recei	ver
Transmitter (USART)	
SCK	81
SDI	-
SDO	
Serial Programming	
Serial Programming, Block Diagram	
Serialized Quick-Turnaround-Production	
SLEEP Mode 111, 1	
SLEEP Mode 111	
Software Simulator (MPSIM)	147
Software Simulator (MPSIM) SPBRG	147 30
Software Simulator (MPSIM)	147 30 111
Software Simulator (MPSIM) SPBRG	147 30 111 81
Software Simulator (MPSIM) SPBRG	147 30 111 81 81
Software Simulator (MPSIM) SPBRG	147 30 111 81 81 30
Software Simulator (MPSIM) 24, 26, 28, Special Features, Section 24, 26, 28, SPI Mode 55, SSPADD 24, 26, 28, SSPBUF 23, 25, 27,	147 30 111 81 81 30 29
Software Simulator (MPSIM) 24, 26, 28, Special Features, Section 24, 26, 28, SPI Mode 35, SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27,	147 30 111 81 81 30 29 29
Software Simulator (MPSIM) 24, 26, 28, Special Features, Section 24, 26, 28, SPI Mode 55, SSPADD 24, 26, 28, SSPBUF 23, 25, 27,	147 30 111 81 81 30 29 29
Software Simulator (MPSIM) 24, 26, 28, Special Features, Section 24, 26, 28, SPI Mode 35, SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27,	147 30 111 81 81 30 29 29 30
Software Simulator (MPSIM) 24, 26, 28, Special Features, Section 24, 26, 28, SPI Mode 55, SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28,	147 30 111 81 30 29 29 30 45
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 28, SPI Mode 28, SS 28, SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, STATUS 23, 24, 25, 26, 27, 28, 29,	147 30 111 81 30 29 29 30 45 30
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 28, SPI Mode 28, SS 28, SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 24, 26, 28, STATUS 23, 24, 25, 26, 27, 28, 29, Status Bits 23, 24, 25, 26, 27, 28, 29,	147 30 111 81 30 29 29 30 45 30 119
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 28, SPI Mode 28, SS 28, SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, STATUS 23, 24, 25, 26, 27, 28, 29, Status Bits 35 Status Bits 35	147 30 111 81 30 29 30 45 30 119 119
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 24, 26, 28, SPI Mode 35 SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, STATUS 23, 24, 25, 26, 27, 28, 29, Status Bits 35 Status Bits During Various Resets 5 Switching Prescalers 5	147 30 111 81 30 29 30 45 30 119 119
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 24, 26, 28, SPI Mode 35 SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, STATUS 23, 24, 25, 26, 27, 28, 29, Status Bits 35 Status Bits During Various Resets 35 Switching Prescalers 39, 24, 25, 26, 27, 28, 29,	147 30 111 81 30 29 30 45 30 119 119 65
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 28, SPI Mode 28, 26, 28, SSPADD 24, 26, 28, SSPADD 24, 26, 28, SSPADD 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 24, 25, 26, 27, 28, 29, Status Bits Status Bits Status Bits During Various Resets Switching Prescalers Switching Prescalers Synchronous Serial Port (SSP) Block Diagram, SPI Mode SPI Mode	147 30 111 81 30 29 30 45 30 119 119 65
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 28, SPI Mode 35, SSPADD 24, 26, 28, SSPADD 24, 26, 28, SSPADD 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, SSPSTAT 24, 26, 28, Stack 35, 25, 26, 27, 28, 29, Status Bits 23, 24, 25, 26, 27, 28, 29, Status Bits During Various Resets 35 Switching Prescalers 35 Synchronous Serial Port (SSP) Block Diagram, SPI Mode I ² C 1 ² C	147 30 111 81 81 30 29 29 30 45 30 119 65 81
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 28, 26, 28, SPI Mode 35 SSPADD 24, 26, 28, SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, SSPSTAT 24, 26, 28, Stack 35, 25, 26, 27, 28, 29, Status Bits 23, 24, 25, 26, 27, 28, 29, Status Bits During Various Resets 35 Switching Prescalers 35 Synchronous Serial Port (SSP) Block Diagram, SPI Mode I ² C 7-bit, 10-bit Address Format	147 30 111 81 81 30 29 29 30 45 30 119 119 65 81 85
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 21, 26, 28, SPI Mode 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, SPSTAT 24, 26, 28, Stack 23, 25, 27, Spector 23, 24, 25, 26, 27, 28, 29, Status Bits 24, 26, 28, Status Bits 23, 24, 25, 26, 27, 28, 29, Status Bits 25, 26, 27, 28, 29, Sy	147 30 111 81 81 30 29 29 30 45 30 119 119 65 81 85 85
Software Simulator (MPSIM) 24, 26, 28, Special Features, Section SPI Mode SS SSPADD 24, 26, 28, SSPADD 24, 26, 28, SSPADD 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack STATUS STATUS 23, 24, 25, 26, 27, 28, 29, Status Bits Status Bits Status Bits During Various Resets Switching Prescalers Switching Prescalers Synchronous Serial Port (SSP) Block Diagram, SPI Mode 1 ² C 7-bit, 10-bit Address Format Addressing. Arbitration Arbitration	147 30 111 81 81 30 29 30 45 30 119 65 81 85 85 87
Software Simulator (MPSIM) 24, 26, 28, SPBRG 24, 26, 28, Special Features, Section 58 SSPADD 24, 26, 28, SSPADD 24, 26, 28, SSPBUF 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 25, 27, SSPSTAT 24, 26, 28, Stack 51, 22, 26, 27, 28, 29, Status Bits 23, 24, 25, 26, 27, 28, 29, Status Bits 51 Status Bits During Various Resets 51 Switching Prescalers 51 Synchronous Serial Port (SSP) 8 Block Diagram, SPI Mode 1 ² C 7-bit, 10-bit Address Format Addressing Arbitration Block Diagram	147 30 111 81 81 30 29 30 45 30 119 65 81 85 85 87 88
Software Simulator (MPSIM) SPBRG 24, 26, 28, Special Features, Section 28, 26, 28, SPI Mode 35 SSPADD 24, 26, 28, SSPADD 24, 26, 28, SSPADD 23, 25, 27, SSPCON 23, 25, 27, SSPSTAT 24, 26, 28, Stack 23, 24, 25, 26, 27, 28, 29, Status Bits 35 Status Bits During Various Resets 35 Switching Prescalers 39 Synchronous Serial Port (SSP) Block Diagram, SPI Mode J ² C 7-bit, 10-bit Address Format Addressing. Arbitration Block Diagram Clock Synchronization	147 30 111 81 30 29 29 30 45 30 119 119 65 81 85 85 87 88 87
Software Simulator (MPSIM) SPBRG	147 30 111 81 30 29 29 30 45 30 119 119 65 81 85 85 87 88 87
Software Simulator (MPSIM) SPBRG	147 30 111 81 81 30 29 30 45 30 119 65 81 85 85 87 88 87 88 87 00
Software Simulator (MPSIM) SPBRG	147 30 111 81 81 30 29 30 45 30 119 65 81 85 85 87 88 87 88 87 88 87 88 87 88 87 88 87 88 87 88 87 88 87 88 87 88 87 86 85
Software Simulator (MPSIM) SPBRG	147 30 111 81 81 30 29 30 45 30 119 65 81 85 85 87 88 87 88 87 00 85 84
Software Simulator (MPSIM)	147 30 111 81 30 29 30 45 30 119 65 81 85 87 88 87 86 87 82 84 92
Software Simulator (MPSIM)	147 30 111 81 30 29 30 45 30 119 65 81 85 85 87 88 87 0 ce 85 84 92 86
Software Simulator (MPSIM) SPBRG	147 30 111 81 30 29 30 45 30 119 65 81 85 87 82 84 92 86 86
Software Simulator (MPSIM)	147 30 111 81 30 29 30 45 30 119 65 81 85 87 86 87 86 87
Software Simulator (MPSIM) SPBRG	147 30 111 81 30 29 30 45 30 119 65 81 85 87 86 87 86 87
Software Simulator (MPSIM)	147 30 111 81 30 29 30 45 30 45 30 119 65 81 855 87 80 82 86 87 92 88

PIC16C6X

Slave Mode, Addressing8	
Slave Mode, Reception9	
Slave Mode, Transmission9	
Terminology, Table8	
Timing Diagram, Slave Mode Reception9	
Timing Diagram, Transmission, 7-bit9	
Transfer Acknowledge8	35
I ² C Section	
Section7	
SPI Master/Slave Diagram8	
SPI Mode8	31
Г	
Г1CON23, 25, 27, 2	9
Γ2CON	
Fime-out Sequence	
Fimer Modules	
Overview, all5	59
Timer0	.0
Block Diagram6	\$1
Counter Mode6	
External Clock	
Interrupt6	
Overview	
Prescaler	-
Section	
Timer Mode6	
Timing Diagram6	
TMR0 register	
Timer1)
Block Diagram6	88
Capacitor Selection	
Counter Mode, Asynchronous6	
Counter Mode, Synchronous	
External Clock	
Oscillator	
Overview	-
Prescaler	
Section	
Timer Mode6	
TMR1 Register Pair6	
Timer2	
Block Diagram7	71
Overview	
Postscaler	-
Prescaler	
Section	
TMR2 Register7	
Timing Diagrams	-
Brown-out Reset	7
I ² C Slave Reception, 7-bit9	
I ² C, Clock Synchronization8	37
I ² C, Data Transfer8	35
I ² C, Multi-Master Arbitration8	37
	14
I ² C. Slave Mode Transmission - 7-bit	11
I ² C, Slave Mode Transmission - 7-bit	91
I ² C, Slave Mode Transmission - 7-bit9 PIC16C61	
I ² C, Slave Mode Transmission - 7-bit	56
I ² C, Slave Mode Transmission - 7-bit9 PIC16C61 CLKOUT and I/O	56 55
I ² C, Slave Mode Transmission - 7-bit9 PIC16C61 CLKOUT and I/O15	56 55 57
I ² C, Slave Mode Transmission - 7-bit9 PIC16C61 CLKOUT and I/O	56 55 57 57
I ² C, Slave Mode Transmission - 7-bit	56 55 57 57
I ² C, Slave Mode Transmission - 7-bit	56 57 57 57 57
I ² C, Slave Mode Transmission - 7-bit	56 57 57 57 57
I ² C, Slave Mode Transmission - 7-bit	56 55 57 57 57 58 57 31
I ² C, Slave Mode Transmission - 7-bit	56 55 57 57 57 57 58 57 57 58 57

	I ² C Bus Data	.185
	I ² C Bus Start/Stop Bits	.184
	Oscillator Start-up Timer	
	Power-up Timer	.179
	Reset	
	SPI Mode	.183
	Timer0	
	Timer1	
	Watchdog Timer	.179
PIC	16C62A	400
	Brown-out Reset	
	Capture/Compare/PWM CLKOUT and I/O	.201
	External Clock	
	I ² C Bus Data	
	I ² C Bus Start/Stop Bits	
	Oscillator Start-up Timer	
	Power-up Timer	
	Reset	
	SPI Mode	
	Timer0	
	Timer1	.200
	Watchdog Timer	.199
PIC	16C63	
	Brown-out Reset	
	Capture/Compare/PWM	.237
	CLKOUT and I/O	
	External Clock	
	I ² C Bus Data	.241
	I ² C Bus Start/Stop Bits	.240
	Oscillator Start-up Timer	
	Power-up Timer	
	Reset	
	SPI Mode	
	Timer0	.236
	Timer0 Timer1	.236 .236
	Timer0 Timer1 USART Synchronous Receive (Master/Slave).	.236 .236
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission	.236 .236 .242
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave)	.236 .236 .242 .242
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer	.236 .236 .242 .242
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64	.236 .236 .242 .242 .242
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave). USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM	.236 .236 .242 .242 .242 .235
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64	.236 .236 .242 .242 .235 .181 .178
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave). USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock	.236 .236 .242 .242 .235 .181 .178 .177
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O	.236 .236 .242 .242 .235 .181 .178 .177 .185
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer	.236 .236 .242 .242 .235 .181 .178 .177 .185 .184 .179
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port	.236 .242 .242 .235 .181 .178 .177 .185 .184 .179 .182
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer	.236 .242 .242 .235 .181 .178 .177 .185 .184 .179 .182 .179
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset	.236 .236 .242 .242 .235 .181 .178 .187 .185 .184 .179 .182 .179 .179
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode	.236 .236 .242 .242 .235 .181 .178 .177 .185 .184 .179 .182 .179 .183
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer0	.236 .242 .242 .242 .235 .181 .178 .177 .185 .184 .179 .182 .179 .183 .180
PIC	Timer0 Timer1 USART Synchronous Receive (Master/Slave). USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer0 Timer1	.2366 .2422 .2422 .2355 .1811 .178 .1777 .1855 .1844 .1799 .1822 .1799 .1833 .1800 .1800
	Timer0 Timer1 USART Synchronous Receive (Master/Slave). USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer0 Timer1 Watchdog Timer	.2366 .2422 .2422 .2355 .1811 .178 .1777 .1855 .1844 .1799 .1822 .1799 .1833 .1800 .1800
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer1 Watchdog Timer Watchdog Timer	.2366 .242 .242 .235 .181 .178 .187 .185 .184 .179 .182 .179 .183 .180 .180 .180 .179
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data Poscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer0 Timer1 Watchdog Timer 16C64A Brown-out Reset	.2366 .242 .242 .235 .181 .178 .187 .185 .184 .179 .182 .179 .183 .180 .180 .179 .189
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data Oscillator Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM	.236 .236 .242 .235 .181 .178 .177 .185 .184 .179 .183 .179 .183 .180 .179 .180 .179 .201
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data Parallel Slave Port Power-up Timer Reset SPI Mode Timer0 Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM CLKOUT and I/O	.236 .236 .242 .235 .181 .178 .185 .184 .179 .183 .179 .183 .180 .179 .183 .180 .179 .201 .198
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data PC Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM CLKOUT and I/O External Clock	.236 .236 .242 .235 .181 .178 .177 .185 .184 .179 .183 .180 .179 .180 .179 .201 .198 .196
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data PC Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data	.236 .236 .242 .242 .235 .181 .178 .177 .185 .184 .179 .180 .179 .183 .180 .179 .199 .201 .198 .196 .205
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer0 Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits	.236 .236 .242 .235 .181 .178 .177 .185 .184 .179 .183 .180 .179 .183 .180 .179 .201 .199 .201 .198 .205 .204
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data PC Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data	.236 .236 .242 .235 .181 .178 .177 .185 .184 .179 .183 .180 .179 .183 .180 .179 .201 .199 .201 .198 .205 .204 .199
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer	.236 .236 .242 .242 .235 .181 .178 .177 .185 .184 .179 .183 .180 .179 .183 .180 .179 .201 .199 .201 .198 .205 .204 .199 .202
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data I ² C Bus Data I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Power-up Timer Power-up Timer Power-up Timer Power-up Timer Power-up Timer Power-up Timer Power-up Timer Power-up Timer Reset	.236 .236 .242 .242 .235 .181 .178 .177 .185 .184 .179 .185 .184 .179 .183 .180 .179 .183 .180 .179 .201 .199 .201 .198 .204 .199 .202 .199 .199
	Timer0 Timer1 USART Synchronous Receive (Master/Slave) . USART Synchronous Transmission (Master/Slave) Watchdog Timer 16C64 Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Start/Stop Bits Oscillator Start-up Timer Parallel Slave Port Power-up Timer Reset SPI Mode Timer1 Watchdog Timer 16C64A Brown-out Reset Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ² C Bus Data Capture/Compare/PWM CLKOUT and I/O External Clock I ² C Bus Data I ³ C Bus Data	.236 .236 .242 .242 .235 .181 .178 .177 .185 .184 .179 .185 .184 .179 .183 .180 .179 .183 .180 .179 .201 .199 .201 .198 .204 .199 .202 .199 .199

Timer1	0
Watchdog Timer 199	9
PIC16C65	
Capture/Compare/PWM219	9
CLKOUT and I/O216	
External Clock215	
I ² C Bus Data	
I ² C Bus Start/Stop Bits222	2
Oscillator Start-up Timer 217	
Parallel Slave Port	
Reset	
SPI Mode221	
Timer0	
Timer1	
USART Synchronous Receive (Master/Slave) . 224	
USART Synchronous Transmission	Ċ
(Master/Slave)	Δ
Watchdog Timer	
PIC16C65A	'
Brown-out Reset	Б
Capture/Compare/PWM	
CLKOUT and I/O	
External Clock	3
I ² C Bus Data	
l ² C Bus Start/Stop Bits	
Oscillator Start-up Timer	
Parallel Slave Port238	
Power-up Timer235	
Reset235	
SPI Mode239	
Timer0236	6
Timer1236	
USART Synchronous Receive (Master/Slave) . 242	2
USART Synchronous Transmission	
USART Synchronous Transmission (Master/Slave)242	2
(Master/Slave)242	
(Master/Slave)	5 1
(Master/Slave)	5 1
(Master/Slave)	5 1 8
(Master/Slave)	5 1 8 6
(Master/Slave)	5 1 8 6 5
(Master/Slave) 242 Watchdog Timer 235 PIC16CR62 201 Capture/Compare/PWM 201 CLKOUT and I/O 196 External Clock 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits 204	5 18 6 5 4
(Master/Slave)242Watchdog Timer235PIC16CR62201CLKOUT and I/O198External Clock196I ² C Bus Data205I ² C Bus Start/Stop Bits204Oscillator Start-up Timer198	5 186549
(Master/Slave)242Watchdog Timer235PIC16CR62201CLKOUT and I/O198External Clock196I ² C Bus Data205I ² C Bus Start/Stop Bits204Oscillator Start-up Timer198Power-up Timer198	5 1865499
(Master/Slave)242Watchdog Timer235PIC16CR62201CLKOUT and I/O196External Clock196I²C Bus Data205I²C Bus Start/Stop Bits204Oscillator Start-up Timer196Power-up Timer196Reset196	5 18654999
(Master/Slave) 242 Watchdog Timer 235 PIC16CR62 201 CLKOUT and I/O 196 External Clock 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits 204 Oscillator Start-up Timer 195 Power-up Timer 195 SPI Mode 203	5 186549993
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock. 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 198 Power-up Timer 199 SPI Mode 203 Timer0 204	5 1865499930
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 198 External Clock. 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 199 Power-up Timer 199 SPI Mode 203 Timer0. 200 Timer1. 200	5 18654999300
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock. 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 198 Power-up Timer 199 SPI Mode 203 Timer0. 200 Timer1. 200 Watchdog Timer. 195	5 18654999300
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 198 External Clock 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 198 Power-up Timer 199 Reset 199 SPI Mode 203 Timer0. 200 Timer1. 200 Watchdog Timer. 199 PIC16CR64 199	5 186549993009
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 198 External Clock. 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 199 Power-up Timer 199 Reset 199 SPI Mode 200 Timer0. 200 Timer1. 200 Watchdog Timer. 199 PIC16CR64 203 Capture/Compare/PWM. 201	5 186549993009 1
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 196 Power-up Timer 196 SPI Mode 203 Timer0. 200 Timer1 200 Watchdog Timer. 195 PIC16CR64 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 196	5 186549993009 18
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 202 Oscillator Start-up Timer 196 Power-up Timer 196 SPI Mode 203 Timer0. 200 Timer1 200 Watchdog Timer. 196 PIC16CR64 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock. 196	5 186549993009 186
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 202 Oscillator Start-up Timer 196 Power-up Timer 196 SPI Mode 203 Timer0. 200 Timer1 200 Watchdog Timer. 195 PIC16CR64 203 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock. 196 I ² C Bus Data 205 I ² C Bus Data 205	5 186549993009 1865
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 202 Oscillator Start-up Timer 199 Power-up Timer 199 Reset 199 SPI Mode 203 Timer0 200 Timer1 200 Watchdog Timer 199 PIC16CR64 201 Capture/Compare/PWM 201 CLKOUT and I/O 198 External Clock 196 I ² C Bus Data 205 I ² C Bus Start/Stop Bits 204	5 186549993009 18654
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock. 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 Reset. 199 SPI Mode 203 Timer0. 200 Timer1 200 Watchdog Timer. 195 PIC16CR64 203 Capture/Compare/PWM. 201 CLKOUT and I/O. 195 PIC16CR64 204 Capture/Compare/PWM. 204 CLKOUT and I/O. 195 External Clock. 196 I ² C Bus Data 205 I ² C Bus Data 205 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 195	5 186549993009 186549
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 202 Oscillator Start/Stop Bits. 204 Oscillator Start-up Timer 196 Power-up Timer 196 SPI Mode 203 Timer0. 200 Timer1. 200 Watchdog Timer. 195 PIC16CR64 203 Capture/Compare/PWM. 201 CLKOUT and I/O. 195 PIC16CR64 203 Capture/Compare/PWM. 201 CLKOUT and I/O. 195 Pi2C16CR64 205 Capture/Compare/PWM. 201 CLKOUT and I/O. 195 Pi2C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 195 Parallel Slave Port 202	5 186549993009 1865492
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 SPI Mode 203 Timer0 200 Timer1 200 Watchdog Timer 199 SPI Mode 203 Timer0 200 Timer1 200 Watchdog Timer 199 PIC16CR64 201 Capture/Compare/PWM 201 CLKOUT and I/O. 198 External Clock 199 I ² C Bus Data 205 I ² C Bus Data 205 I ² C Bus Data 205 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 199 Parallel Slave Port 202 Oscillator Start-up Timer 199 Parallel Slave Port 202 Power-up Timer 199 Parallel Slave Port	5 186549993009 18654929
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 Reset 199 SPI Mode 203 Timer0 200 Timer1 200 Watchdog Timer 195 PIC16CR64 203 Capture/Compare/PWM 201 CLKOUT and I/O 195 PIC16CR64 204 Capture/Compare/PWM 204 CLKOUT and I/O 195 Pi2C Bus Data 205 I ² C Bus Start/Stop Bits 204 Oscillator Start-up Timer 195 </td <td>5 186549993009 186549299</td>	5 186549993009 186549299
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 Reset 196 SPI Mode 203 Timer0 200 Timer1 200 Watchdog Timer 195 PIC16CR64 203 Capture/Compare/PWM 204 Capture/Compare/PWM 204 CitkOUT and I/O 195 PIC16CR64 205 Capture/Compare/PWM 204 CLKOUT and I/O 195 Pi2C Bus Data 205 I ² C Bus Data 205 I ² C Bus Start/Stop Bits 204 Oscillator Start-up Timer 195 Parallel Slave Port 202 Power-up Timer 195 Parallel Slave Port 202 Power-up Timer 195 PI Mode 203	5 186549993009 1865492993
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock 196 I ² C Bus Data 202 Oscillator Start/Stop Bits. 204 Oscillator Start-up Timer 199 Power-up Timer 199 SPI Mode 203 Timer0. 200 Timer1. 200 Watchdog Timer. 195 PIC16CR64 203 Capture/Compare/PWM. 201 CLKOUT and I/O. 195 PIC16CR64 205 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 External Clock. 196 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 196 Parallel Slave Port 202 Power-up Timer 196 Parallel Slave Port 202 Power-up Timer 196 Parallel Slave Port 202 Power-up Timer 196 SPI Mode 203 Time	5 1865499993009 18654929930
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock. 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 Reset 199 SPI Mode 200 Timer0 200 Watchdog Timer. 199 PIC16CR64 200 Capture/Compare/PWM 201 CLKOUT and I/O. 198 External Clock. 199 PIC16CR64 200 Capture/Compare/PWM. 201 CLKOUT and I/O. 198 External Clock. 196 I ² C Bus Data 202 Oscillator Start-up Timer 196 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 198 Parallel Slave Port 202 Power-up Timer 199 Parallel Slave Port 202 Power-up Timer 199 SPI Mode 203 Timer0.	5 186549993009 186549299300
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock. 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 SPI Mode 200 Timer0 200 Timer1 200 Watchdog Timer. 199 PIC16CR64 200 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 Fixternal Clock. 196 PIC16CR64 200 Capture/Compare/PWM. 201 CLKOUT and I/O. 196 Fixternal Clock. 196 I ² C Bus Data 202 Oscillator Start-up Timer. 196 I ² C Bus Start/Stop Bits. 204 Oscillator Start-up Timer 196 Parallel Slave Port 202 Power-up Timer 196 Parallel Slave Port 202 Power-up Timer 196 SPI Mode 203 Timer0.<	5 1865499993009 1865492993009
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 198 External Clock. 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 SPI Mode 200 Timer0 200 Timer1 200 Watchdog Timer. 199 PIC16CR64 201 Capture/Compare/PWM 201 CLKOUT and I/O. 198 External Clock. 199 PIC16CR64 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 198 External Clock. 196 I ² C Bus Data 202 Oscillator Start-up Timer 199 Parallel Slave Port 202 Oscillator Start-up Timer 199 Parallel Slave Port 202 Power-up Timer 199 Parallel Slave Port 202 Node 203 Timer0 204 Oscillator Start-up Timer	5 1865499993009 18654929930097
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 196 External Clock. 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 Reset 199 SPI Mode 200 Timer0 200 Watchdog Timer. 199 PIC16CR64 200 Capture/Compare/PWM 201 CLKOUT and I/O. 198 External Clock. 199 PIC16CR64 200 Capture/Compare/PWM. 201 CLKOUT and I/O. 198 External Clock. 196 I ² C Bus Data 202 Oscillator Start-up Timer 199 Parallel Slave Port 202 Oscillator Start-up Timer 199 Parallel Slave Port 202 Power-up Timer 199 Parallel Slave Port 202 Power-up Timer 199 SPI Mode 200 Timer0. <	5 186549993009 186549299300976
(Master/Slave) 242 Watchdog Timer. 235 PIC16CR62 201 CLKOUT and I/O. 198 External Clock. 196 I ² C Bus Data 202 Oscillator Start-Up Timer 199 Power-up Timer 199 SPI Mode 200 Timer0 200 Timer1 200 Watchdog Timer. 199 PIC16CR64 201 Capture/Compare/PWM 201 CLKOUT and I/O. 198 External Clock. 199 PIC16CR64 201 Capture/Compare/PWM. 201 CLKOUT and I/O. 198 External Clock. 196 I ² C Bus Data 202 Oscillator Start-up Timer 199 Parallel Slave Port 202 Oscillator Start-up Timer 199 Parallel Slave Port 202 Power-up Timer 199 Parallel Slave Port 202 Node 203 Timer0 204 Oscillator Start-up Timer	5 186549993009 1865492993009760

TMR0 23, 25, 27, 29 TMR1H 23, 25, 27, 29 TMR1L 23, 25, 27, 29 TMR2 23, 25, 27, 29 TMR2 23, 25, 27, 29 TO 119 TRISA 24, 26, 28, 30 TRISE 24, 26, 28, 30 TRISD 24, 26, 28, 30 TRISE 24, 26, 28, 30 TRISE 24, 26, 28, 30 TRISE 24, 26, 28, 30 TXREG 23, 25, 27, 29 TXSTA 24, 26, 28, 30 U U
Universal Synchronous Asynchronous Receiver Transmitter (USART)
Asynchronous Mode
Setting Up Transmission 102
Timing Diagram, Master Transmission 102
Transmitter 101
Asynchronous Receiver
Setting Up Reception 104
Timing Diagram
Asynchronous Receiver Mode
Block Diagram
Section
Section
Synchronous Master Mode
Reception
Section105
Setting Up Reception 107
Setting Up Transmission 105
Timing Diagram, Reception 108
Timing Diagram, Transmission
Transmission 105
Synchronous Slave Mode
Reception 109
Section
Setting Up Reception
Setting Up Transmission
Transmit
Transmit Block Diagram 101
UV Erasable Devices
W
Wake-up from Sleep 129
Wake-up on Key Depression 49
Watchdog Timer (WDT)
Block Diagram
Period
Programming Considerations
Section
Weak Internal Pull-ups
X
XT 118
Z
-
Zero bit9

 SPI Mode, Slave Mode With SS Control
 83

 USART, Asynchronous Reception
 103

 USART, Synchronous Tranmission
 106

 Wake-up from SLEEP Through Interrupts
 129

LIST OF EXAMPLES

Example 3-1: Example 4-1: Example 4-2: Example 5-1: Example 5-2: Example 5-3: Example 5-4:	Instruction Pipeline Flow17Call of a Subroutine in Page 1 from Page 046Indirect Addressing46Initializing PORTA47Initializing PORTB49Initializing PORTC51Read-Modify-Write Instructions on an10I/O Port56
Example 7-1: Example 7-2:	Changing Prescaler (Timer0→WDT)65 Changing Prescaler (WDT→Timer0)65
Example 8-1:	Reading a 16-bit Free-running Timer
Example 10-2: Example 11-1: Example 12-1: Example 13-1:	Changing Between Capture Prescalers75 PWM Period and Duty Cycle Calculation77 Loading the SSPBUF (SSPSR) Register81 Calculating Baud Rate Error97 Saving Status and W Registers in RAM (PIC16C61)
	64A/R64/65/65A) 127

LIST OF FIGURES

Figure 3-1: Figure 3-2:	PIC16C61 Block Diagram10 PIC16C62/62A/R62/64/64A/R64 Block
Figure 5-2.	Diagram
Figure 3-3:	PIC16C63/65/65A Block Diagram
Figure 3-4:	Clock/Instruction Cycle
Figure 4-1:	PIC16C61 Program Memory Map and
	Stack
Figure 4-2:	PIC16C62/62A/R62/64/64A/
U U	R64 Program Memory Map and Stack 19
Figure 4-3:	PIC16C63/65/65A Program Memory Map and Stack
FIGURE 4-4:	PIC16C61 Register File Map20
FIGURE 4-5:	PIC16C62/62A/R62/64/64A/
	R64 Register File Map21
Figure 4-6:	PIC16C63/65/65A Register File Map21
Figure 4-7:	STATUS Register (Address 03h, 83h) 31
Figure 4-8:	OPTION Register (Address 81h) 32
Figure 4-9:	INTCON Register for PIC16C61
	(Address 0Bh, 8Bh)
Figure 4-10:	INTCON Register for
	PIC16C62/62A/R62/63/64/64A/R64/65/65A
	(Address 0Bh, 8Bh)
Figure 4-11:	PIE1 Register for PIC16C62/62A/R62 (Address 8Ch)35
Figure 4-12:	PIE1 Register for PIC16C63
Figure 4-12.	(Address 8Ch)
Figure 4-13:	PIE1 Register for PIC16C64/64A/R64
rigulo 4 lo.	(Address 8Ch)
Figure 4-14:	PIE1 Register for PIC16C65/65A
	(Address 8Ch)
Figure 4-15:	PIR1 Register for PIC16C62/62A/R62
0	(Address 0Ch)
Figure 4-16:	PIR1 Register for PIC16C63
-	(Address 0Ch)
Figure 4-17:	PIR1 Register for PIC16C64/64A/R64
	(Address 0Ch) 40
Figure 4-18:	PIR1 Register for PIC16C65/65A
	(Address 0Ch)41
Figure 4-19:	PIE2 Register (Address 8Dh) 42
Figure 4-20:	PIR2 Register (Address 0Dh) 43

Figure 4-21:	PCON Register for PIC16C62/64/65 (Address 8Eh)	11
Figure 4-22:	PCON Register for	
5	PIC16C62A/R62/63/64A/R64/65A	
	(Address 8Eh)	
Figure 4-23:	Loading of PC in Different Situations	
Figure 4-24:	Direct/Indirect Addressing	.46
Figure 5-1:	Block Diagram of the	
	RA3:RA0 Pins and the RA5 Pin	
Figure 5-2:	Block Diagram of the RA4/T0CKI Pin	.47
Figure 5-3:	Block Diagram of the	40
Figure 5-4:	RB7:RB4 Pins FOR PIC16C61/62/64/65 Block Diagram of the	.49
Figure 5-4.	RB7:RB4 Pins FOR	
	PIC16C62A/63/64A/65A	50
Figure 5-5:	Block Diagram of the	.00
· ·gui o o oi	RB3:RB0 Pins	.50
Figure 5-6:	PORTC Block Diagram (Peripheral	
0	Output Override)	.51
Figure 5-7:	PORTD Block Diagram	
	(In I/O Port Mode)	.53
Figure 5-8:	PORTE Block Diagram	
	(In I/O Port Mode)	
Figure 5-9:	TRISE Register (Address 89h)	
Figure 5-10:	Successive I/O Operation	.56
Figure 5-11:	PORTD and PORTE as a Parallel Slave	
Figure 7.4	Port	
Figure 7-1: Figure 7-2:	Timer0 Block Diagram Timer0 Timing: Internal Clock/No Prescaler	
Figure 7-2:	Timer0 Timing: Internal Clock/Prescale 1:2	
Figure 7-4:	Timer0 Interrupt Timing	
Figure 7-5:	Timer0 Timing With External Clock	
Figure 7-6:	Block Diagram of the Timer0/WDT	
- gane - er	Prescaler	.64
Figure 8-1:	T1CON: Timer1 Control Register	
-	(Address 10h)	.67
Figure 8-2:	Timer1 Block Diagram	
Figure 9-1:	Timer2 Block Diagram	.71
Figure 9-2:	T2CON: Timer2 Control Register	
F : 40.4	(Address 12h)	.71
Figure 10-1:	CCP1CON Register (Address 17h) /	74
	CCP2CON Register (Address 1Dh)	
Figure 10-2: Figure 10-3:	Capture Mode Operation Block Diagram Compare Mode Operation Block Diagram .	
Figure 10-3.	Simplified PWM Block Diagram	
	PWM Output	
Figure 11-1:	SSPSTAT: Sync Serial Port Status Registe	
5	(Address 94h)	
Figure 11-2:	SSPCON: Sync Serial Port Control Register	er
	(Address 14h)	.80
Figure 11-3:	SSP Block Diagram	
	(SPI Mode)	
Figure 11-4:	SPI Master/Slave Connection	.82
Figure 11-5:	SPI Mode Timing (Master Mode or Slave	
	Mode w/o SS Control)	.83
Figure 11-6:	SPI Mode Timing (Slave Mode with \overline{SS}	~~
	Control)	
Figure 11-7:	Start and Stop Conditions	
Figure 11-8: Figure 11-9:	7-bit Address Format I ² C 10-bit Address Format	
Figure 11-9: Figure 11-10:	Slave-Receiver Acknowledge	
Figure 11-11:	Data Transfer Wait State	
Figure 11-12:	Master-Transmitter Sequence	
Figure 11-13:	Master-Receiver Sequence	
Figure 11-14:	Combined Format	
Figure 11-15:	Multi-master Arbitration (Two Masters)	
-	· · · /	

PIC16C6X

Figure 11-16:	Clock Synchronization	
Figure 11-17:	SSP Block Diagram	
E '	(I ² C Mode)	
Figure 11-18:	I ² C Waveforms for Reception (7-Bit Address)90	
Figure 11-19:	I ² C Waveforms for Transmission	
Figure 11-19.	(7-bit Address)	
Figure 11-20:	Operation of the I^2C Module in IDLE_MODE,	
Figure 12-1:	RCV_MODE or XMIT_MODE	
rigato 12 1.	Register (Address 98h)	
Figure 12-2:	RCSTA: Receive Status and Control	
ga.o	Register (Address 18h)	
Figure 12-3:	RX Pin Sampling Scheme (BRGH = 0) 100	
Figure 12-4:	RX Pin Sampling Scheme (BRGH = 1) 100	
Figure 12-5:	RX Pin Sampling Scheme (BRGH = 1) 100	
Figure 12-6:	USART Transmit Block Diagram 101	
Figure 12-7:	Asynchronous Master Transmission 102	
Figure 12-8:	Asynchronous Master Transmission	
	(Back to Back) 102	
Figure 12-9:	USART Receive Block Diagram 103	
Figure 12-10:	Asynchronous Reception103	
Figure 12-11:	Synchronous Transmission106	
Figure 12-12:	Synchronous Transmission	
-	(Through TXEN) 106	
Figure 12-13:	Synchronous Reception (Master Mode,	
Figure 12.1	SREN)	
Figure 13-1: Figure 13-2:	Configuration Word for PIC16C61	
Figure 13-2. Figure 13-3:	Configuration Word for	
Figure 13-3.	PIC16C62A/R62/63/64A/R64/65A	
Figure 13-4:	Crystal/Ceramic Resonator Operation	
riguie io 4.	(HS, XT or LP OSC Configuration)	
Figure 13-5:	External Clock Input Operation (HS, XT or	
0	LP OSC Configuration) 113	
Figure 13-6:	External Parallel Resonant Crystal Oscillator	
	Circuit	
Figure 13-7:	External Series Resonant Crystal	
	Oscillator Circuit115	
Figure 13-8:	RC Oscillator Mode115	
Figure 13-9:	Simplified Block Diagram of On-chip	
F : 40.40	Reset Circuit	
Figure 13-10:	Brown-out Situations	
Figure 13-11:	Time-out Sequence on Power-up	
Figure 12 12:	(MCLR not Tied to VDD): Case 1 122	
Figure 13-12:	Time-out Sequence on Power-up (MCLR Not Tied To VDD): Case 2	
Figure 13-13:	Time-out Sequence on Power-up	
. iguio 10-10.	(MCLR Tied to VDD)	
Figure 13-14:	External Power-on Reset Circuit (For	
0	Slow VDD Power-up)	
Figure 13-15:	External Brown-out Protection Circuit 1 123	
Figure 13-16:	External Brown-out Protection Circuit 2 123	
Figure 13-17:	Interrupt Logic for PIC16C61 125	
Figure 13-18:	Interrupt Logic for PIC16C62/62A/R62/63 125	
Figure 13-19:	Interrupt Logic for	
	PIC16C64/64A/R64/65/65A125	
Figure 13-20:	INT Pin Interrupt Timing126	
Figure 13-21:	Watchdog Timer Block Diagram 128	
Figure 13-22:	Summary of Watchdog Timer Registers 128	
Figure 13-23:	Wake-up from Sleep Through Interrupt 129	
Figure 13-24:	Typical In-circuit Serial Programming	
	Connection	
Figure 14-1:	General Format for Instructions	
Figure 15-1:	PICMASTER System Configuration 143	

Figure 16-1:	Load Conditions for Device Timing	
- gale te ti	Specifications	
Figure 16-2:	External Clock Timing	
Figure 16-3:	CLKOUT and I/O Timing	
Figure 16-4:	Reset, Watchdog Timer, Oscillator Start-up	
	Timer and Power-up Timer Timing 157	
Figure 16-5:	Timer0 Clock Timings 15	
Figure 17-1:	Typical RC Oscillator Frequency vs.	
F inan 47 0	Temperature	
Figure 17-2:	Typical RC Oscillator Frequency vs. VDD. 160 Typical RC Oscillator Frequency vs. VDD. 160	
Figure 17-3:	Typical RC Oscillator Frequency vs. VDD. 160 Typical RC Oscillator Frequency vs. VDD. 161	
Figure 17-4: Figure 17-5:	Typical PD vs. VDD Watchdog Timer	
Figure 17-5.	Disabled 25°C 161	
Figure 17-6:	Typical IPD vs. VDD Watchdog Timer	
0	Enabled 25°C 162	
Figure 17-7:	Maximum IPD vs. VDD Watchdog	
	Disabled 162	
Figure 17-8:	Maximum IPD vs. VDD Watchdog	
	Enabled*	
Figure 17-9:	VTH (Input Threshold Voltage) of I/O	
E inung 47 40	Pins vs. VDD	
Figure 17-10:	VIH, VIL of MCLR, TOCKI and OSC1 (in RC Mode) vs. VDD	
Figure 17-11:	VTH (Input Threshold Voltage) of OSC1	
rigule in the	Input (in XT, HS, and LP Modes) vs. VDD 164	
Figure 17-12:	Typical IDD vs. Frequency (External	
	Clock, 25°C)	
Figure 17-13:	Maximum IDD vs. Frequency (External	
-	Clock, -40° to +85°C) 165	
Figure 17-14:	Maximum IDD vs. Frequency (External	
	Clock, -55° to +125°C) 166	
Figure 17-15:	WDT Timer Time-out Period vs. VDD 166	
Figure 17-16:	Transconductance (gm) of HS	
E : 1- 1-	Oscillator vs. VDD 167	
Figure 17-17:	Transconductance (gm) of LP	
Figure 17-18:	Oscillator vs. VDD	
Figure 17-10.	Oscillator vs. VDD 168	
Figure 17-19:	IOH vs. VOH, VDD = 3V	
Figure 17-20:	юн vs. voн, vbb = оv 169 Юн vs. Voн, Vdd = 5V	
Figure 17-21:	IOL vs. VOL, VDD = 3V	
Figure 17-22:	IOL vs. VOL, VDD = 5V	
Figure 18-1:	Load Conditions for Device Timing	
0	Specifications 176	
Figure 18-2:	External Clock Timing 177	
Figure 18-3:	CLKOUT and I/O Timing 178	
Figure 18-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer and Power-up Timer	
	Timing	
Figure 18-5:	Timer0 and Timer1 Clock Timings	
Figure 18-6:	Capture/Compare/PWM Timings (CCP1) 181	
Figure 18-7:	Parallel Slave Port Timing For The PIC16C64 Only)	
Figure 18-8:	SPI Mode Timing	
Figure 18-9:	I ² C Bus Start/Stop Bits Timing	
Figure 18-10:	I ² C Bus Data Timing	
Figure 20-1:	Load Conditions for Device Timing	
U	Specifications	
Figure 20-2:	External Clock Timing 196	
Figure 20-3:	CLKOUT and I/O Timing 198	
Figure 20-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer and Power-up Timer	
P a = -	Timing	
Figure 20-5:	Brown-out Reset Timing	
Figure 20-6:	Timer0 and Timer1 Clock Timings 200	

Figure 20-7:	Capture/Compare/PWM Timings (CCP1). 201
Figure 20-8:	Parallel Slave Port Timing For The
	PIC16C64A/R64 Only202
Figure 20-9:	SPI Mode Timing 203
Figure 20-10:	I ² C Bus Start/Stop Bits Timing
Figure 20-11:	I ² C Bus Data Timing
Figure 22-1:	Load Conditions for Device Timing
	Specifications
Figure 22-2:	External Clock Timing
Figure 22-3:	CLKOUT and I/O Timing 216
Figure 22-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer and Power-up Timer
	Timing
Figure 22-5:	Timer0 and Timer1 Clock Timings
Figure 22-6:	Capture/Compare/PWM Timings (CCP1
0	and CCP2)
Figure 22-7:	Parallel Slave Port Timing
Figure 22-8:	SPI Mode Timing 221
Figure 22-9:	I ² C Bus Start/Stop Bits Timing
Figure 22-10:	I ² C Bus Data Timing
Figure 22-11:	USART Module: Synchronous
-	Transmission (Master/Slave) Timing 224
Figure 22-12:	USART Module: Synchronous Receive
	(Master/Slave) Timing 224
Figure 24-1:	Load Conditions for Device Timing
	Specifications
Figure 24-2:	External Clock Timing233
Figure 24-3:	CLKOUT and I/O Timing234
Figure 24-4:	Reset, Watchdog Timer, Oscillator
	Start-up Timer and Power-up Timer
	Timing
Figure 24-5:	Brown-out Reset Timing 235
Figure 24-6:	Timer0 and Timer1 Clock Timings
Figure 24-7:	Capture/Compare/PWM Timings
	(CCP1 and CCP2) 237
Figure 24-8:	Parallel Slave Port Timing For the
	PIC16C65A Only
Figure 24-9:	SPI Mode Timing 239
Figure 24-10:	I ² C Bus Start/Stop Bits Timing240
Figure 24-11:	I ² C Bus Data Timing 241
Figure 24-12:	USART Module: Synchronous
	Transmission (Master/Slave) Timing 242
Figure 24-13:	USART Module: Synchronous Receive
	(Master/Slave) Timing242

LIST OF TABLES

Table 1-1: Table 3-1:	PIC16C6X Family of Devices PIC16C61 Pinout Description	
Table 3-2:	PIC16C62/62A/R62/63 Pinout Description.	
Table 3-3:	PIC16C64/64A/R64/65/65A Pinout Description	
Table 4-1:	Special Function Registers for the PIC16C61	
Table 4-2:	Special Function Registers for the PIC16C62/62A/R62	
Table 4-3:	Special Function Registers for the PIC16C63	
Table 4-4:	Special Function Registers for the PIC16C64/64A/R64	.27
Table 4-5:	Special Function Registers for the PIC16C65/65A	.29
Table 5-1:	PORTA Functions	.48
Table 5-2:	Summary of Registers Associated with PORTA	
Table 5-3:	PORTB Functions	.50
Table 5-4:	Summary of Registers Associated with PORTB	
Table 5-5:	PORTC Functions for PIC16C62/64	.51
Table 5-6:	PORTC Functions for PIC16C62A/R62/64A/R64	.52
Table 5-7:	PORTC Functions for PIC16C63/65/65A	.52
Table 5-8:	Summary of Registers Associated with PORTC	.52
Table 5-9:	PORTD Functions	.53
Table 5-10:	Summary of Registers Associated with PORTD	
Table 5-11:	PORTE Functions	.55
Table 5-12:	Summary of Registers Associated with PORTE	.55
Table 5-13:	Registers Associated with Parallel Slave Port	.57
Table 7-1: Table 8-1:	Registers Associated with Timer0 Capacitor Selection for the Timer1	.65
	Oscillator	.69
Table 8-2:	Registers Associated with Timer1 as a Timer/Counter	.70
Table 9-1:	Registers Associated with Timer2 as a Timer/Counter	.72
Table 10-1:	CCP Mode - Timer Resource	.73
Table 10-2:	Interaction of Two CCP Modules	.73
Table 10-3:	Example PWM Frequencies and Resolutions at 20 MHz	.77
Table 10-4:	Registers Associated with Timer1, Capture and Compare	
Table 10-5:	Registers Associated with PWM and Timer2	
Table 11-1:	Registers Associated with SPI Operation	
Table 11-2:	I ² C Bus Terminology	
Table 11-3:	Data Transfer Received Byte Actions	
Table 11-4:	Registers Associated with I ² C Operation	.92
Table 12-1:	Baud Rate Formula	
Table 12-2:	Registers Associated with Baud Rate Generator	
Table 12-3:	Baud Rates for Synchronous Mode	
Table 12-4:	Baud Rates for Asynchronous Mode (BRGH = 0)	
Table 12-5:	Baud Rates for Asynchronous Mode (BRGH = 1)	
Table 12-6:	Registers Associated with Asynchronous Transmission1	

PIC16C6X

Table 12-7:	Registers Associated with Asynchronous	
	Reception104	
Table 12-8:	Registers Associated with Synchronous	
	Master Transmission 106	
Table 12-9:	Registers Associated with Synchronous	
T 10.10	Master Reception	
Table 12-10:	Registers Associated with Synchronous	
Slave Transmission		
Table 12-11:	Registers Associated with Synchronous	
	Slave Reception	
Table 13-1:	Ceramic Resonators PIC16C61	
Table 13-2:	Capacitor Selection for Crystal Oscillator for PIC16C61114	
Table 13-3:	Ceramic Resonators	
Table 13-3.	PIC16C62/62A/R62/63/64/	
	64A/R64/65/65A	
Table 13-4:	Capacitor Selection for Crystal Oscillator for	
	PIC16C62/62A/R62/63/64/	
	64A/R64/65/65A114	
Table 13-5:	Time-out in Various Situations.	
Table 13-3.	PIC16C61/62/64/65	
Table 13-6:	Time-out in Various Situations,	
	PIC16C62A/R62/63/64A/R64/65A118	
Table 13-7:	Status Bits and Their Significance,	
	PIC16C61	
Table 13-8:	Status bits and Their Significance,	
Table 10-0.	PIC16C62/64/65 118	
Table 13-9:	Status Bits and Their Significance for	
	PIC16C62A/R62/63/64A/R64/65A119	
Table 13-10:	Reset Condition for Special Registers on	
	PIC16C61/62/64/65 119	
Table 13-11:	Reset Condition for Special Registers on	
	PIC16C62A/R62/63/64A/R64/65A	
Table 13-12:	Initialization Conditions for all Registers 120	
Table 14-1:	Opcode Field Descriptions	
Table 14-2:	PIC16CXX Instruction Set	
Table 15-1:	PICMASTER Probe Specification	
Table 15-2:	Development System Packages147	
Table 16-1:	Cross Reference of Device Specs for	
	Oscillator Configurations and Frequencies	
	of Operation (Commercial Devices)	
Table 16-2:	External Clock Timing Requirements 155	
Table 16-3:	CLKOUT and I/O Timing Requirements 156	
Table 16-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer and Power-up Timer	
	Requirements157	
Table 16-5:	Timer0 Clock Requirements 158	
Table 17-1:	RC Oscillator Frequencies 159	
Table 17-2:	Input Capacitance* 170	
Table 18-1:	Cross Reference of Device Specs for	
	Oscillator Configurations and Frequencies	
	of Operation (Commercial Devices)171	
Table 18-2:	External Clock Timing Requirements 177	
Table 18-3:	CLKOUT and I/O Timing Requirements 178	
Table 18-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer and Power-up Timer	
	Requirements	
Table 18-5:	Timer0 and Timer1 Clock Requirements 180	
Table 18-6:	Capture/Compare/PWM Requirements	
	(CCP1)	
Table 18-7:		
	Parallel Slave Port Requirements for the	
Table 10.0	PIC16C64 Only182	
Table 18-8:	PIC16C64 Only	
Table 18-9:	PIC16C64 Only	
	PIC16C64 Only	

Table 20-1:	Cross Reference of Device Specs for		
	Oscillator Configurations and		
	Frequencies of Operation (Commercial		
	Devices)		
Table 20-2:	External Clock Timing Requirements 196		
Table 20-3:	CLKOUT and I/O Timing Requirements 198		
Table 20-4:	Reset, Watchdog Timer, Oscillator		
10010 20 4.	Start-up Timer, Power-up Timer, and		
	Brown-out Reset Requirements		
Table 20-5:	•		
	Timer0 and Timer1 Clock Requirements 200		
Table 20-6:	Capture/Compare/PWM Requirements		
Table 00.7	(CCP1)		
Table 20-7:	Parallel Slave Port Requirements for the		
	PIC16C64A/R64 Only		
Table 20-8:	SPI Mode Requirements		
Table 20-9:	I ² C Bus Start/Stop Bits Requirements 204		
Table 20-10:	I ² C Bus Data Requirements		
Table 22-1:	Cross Reference of Device Specs for		
	Oscillator Configurations and		
	Frequencies of Operation (Commercial		
	Devices) 209		
Table 22-2:	External Clock Timing Requirements 215		
Table 22-3:	CLKOUT and I/O Timing Requirements 216		
Table 22-4:	Reset, Watchdog Timer, Oscillator		
	Start-up Timer and Power-up Timer		
	Requirements 217		
Table 22-5:	Timer0 and Timer1 Clock Requirements 218		
Table 22-6:	Capture/Compare/PWM Requirements		
	(CCP1 and CCP2) 219		
Table 22-7:	Parallel Slave Port Requirements 220		
Table 22-8:	SPI Mode Requirements 221		
Table 22-9:	I ² C Bus Start/Stop Bits Requirements 222		
Table 22-10:	i ² C Bus Data Requirements		
Table 22-11:	Serial Port Synchronous Transmission		
	Requirements 224		
Table 22-12:	Serial Port Synchronous Receive		
	Requirements 224		
Table 24-1:	Cross Reference of Device Specs for		
	Oscillator Configurations and		
	Frequencies of Operation (Commercial		
	Devices) 227		
Table 24-2:	External Clock Timing Requirements 233		
Table 24-3:	CLKOUT and I/O Timing Requirements 234		
Table 24-4:	Reset, Watchdog Timer, Oscillator		
	Start-up Timer, Power-up Timer, and		
	Brown-out Reset Requirements 235		
Table 24-5:	Timer0 and Timer1 Clock Requirements 236		
Table 24-6:	Capture/Compare/PWM Requirements		
	(CCP1 and CCP2) 237		
Table 24-7:	Parallel Slave Port Requirements for the		
	PIC16C65A Only 238		
Table 24-8:	SPI Mode Requirements 239		
Table 24-9:	I ² C Bus Start/Stop Bits Requirements 240		
Table 24-10:	I ² C Bus Data Requirements		
Table 24-11:	Serial Port Synchronous Transmission		
	Requirements		
Table 24-12:	Serial Port Synchronous Receive		
	Requirements		
Table E-1:	PIC16C5X Family of Devices		
Table E-2:	PIC16C62X Family of Devices		
Table E-3:	PIC16C6X Family of Devices		
Table E-4:	PIC16C7X Family of Devices		
Table E-5:	PIC16C8X Family of Devices		
Table E-6:	PIC17CXX Family of Devices		
Table E-7:	Pin Compatible Devices		

CONNECTING TO MICROCHIP BBS

Connect worldwide to the Microchip BBS using the CompuServe[®] communications network. In most cases a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore **you do not need CompuServe membership to join Microchip's BBS**.

There is **no charge** for connecting to the BBS, except for a toll charge to the CompuServe access number, where applicable. You do not need to be a CompuServe member to take advantage of this connection (you never actually log in to CompuServe).

The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allows multiple users at baud rates up to 14400 bps.

The following connect procedure applies in most locations:

- 1. Set your modem to 8 bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- Depress <ENTER→> and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress <ENTER→> and Host Name: will appear.
- 5. Type **MCHIPBBS**, depress < **ENTER**, → and you will be connected to the Microchip BBS.

In the United States, to find CompuServe's phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with Host Name:, type

NETWORK, depress < ENTER, → >

and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 457-1550 for your local CompuServe number.

Trademarks:

The Microchip name, logo, PIC, PICMASTER, and PICSTART are registered trademarks of Microchip Technology Incorporated in the U.S.A.

MPLAB, PRO MATE, and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip Technology Incorporated.

*fuzzy*TECH is a registered trademark of Inform Software Corporation.

IBM, IBM PC-AT are registered trademarks of International Business Machines Corp.

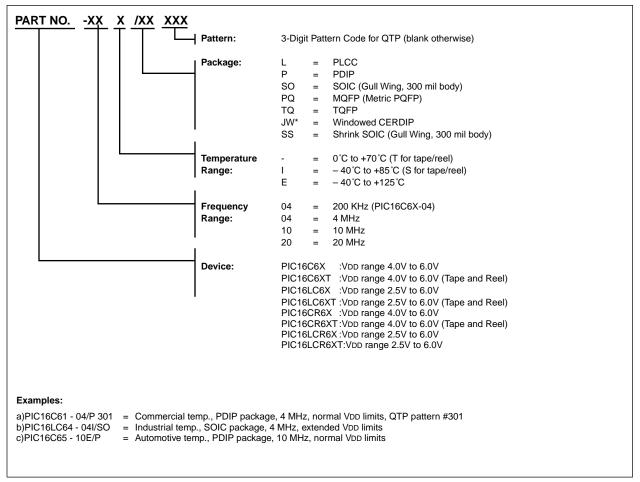
Pentium is a trademark of Intel Corporation.

MS-DOS and Microsoft Windows are registered trademarks of Microsoft Corporation. Windows is a trademark of Microsoft Corporation.

CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE


It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
Fro	m: Name		
	Company		
۸	Telephone: ()	FAX: ()	
	lication (optional):		
	uld you like a reply?YN	D000001D	
Dev	rice: PIC16C6X Literature Numb	ber: DS30234B	
Que	estions:		
1.	What are the best features of this document?		
2.	How does this document meet your hardware and	d software development needs?	
3.	Do you find the organization of this data sheet ea	isy to follow? If not, why?	
4.	What additions to the data sheet do you think wo	uld enhance the structure and subject?	
	4. What additions to the data sheet do you think would enhance the structure and subject?		
5.	What deletions from the data sheet could be made	e without affecting the overall usefullness?	
6.	Is there any incorrect or misleading information (what and where)?	
_			
7.	How would you improve this document?		
8.	How would you improve our software, systems, a	nd silicon products?	
0.			

PIC16C6X Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office.
- 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277
- 3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602 786-7200 Fax: 602 786-7277 Technical Support: 602 786-7627 Web: http://www.mchip.com/microchip

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Fax: 770 640-0307 Tel: 770 640-0034 Boston Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508 480-9990 Fax: 508 480-8575 Chicago Microchip Technology Inc. 333 Pierce Road, Suite 180

Itasca, IL 60143 Tel: 708 285-0071 Fax: 708 285-0075

Dallas

Microchip Technology Inc. 14651 Dallas Parkway, Suite 816 Dallas, TX 75240-8809 Tel: 214 991-7177 Fax: 214 991-8588

Dayton

Microchip Technology Inc. Suite 150 Two Prestige Place Miamisburg, OH 45342 Tel: 513 291-1654 Fax: 513 291-9175

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92715 Tel: 714 263-1888 Fax: 714 263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 416 Hauppauge, NY 11788 Tel: 516 273-5305 Fax: 516 273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC

Hona Kona Microchip Technology Unit No. 3002-3004, Tower 1 Metroplaza 223 Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: 852 2 401 1200 Fax: 852 2 401 3431 Korea **Microchip Technology** 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku, Seoul, Korea Tel: 82 2 554 7200 Fax: 82 2 558 5934 Singapore Microchip Technology 200 Middle Road #10-03 Prime Centre Singapore 188980 Fax: 65 334 8850 Tel: 65 334 8870 Taiwan **Microchip Technology** 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kinadom Arizona Microchip Technology Ltd. Unit 6, The Courtyard Meadow Bank, Furlong Road Bourne End, Buckinghamshire SL8 5AJ Tel: 44 1 628 851077 Fax: 44 1 628 850259 France Arizona Microchip Technology SARL 2 Rue du Buisson aux Fraises 91300 Massy - France Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79 Germany Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Muenchen, Germany Tel: 49 89 627 144 0 Fax: 49 89 627 144 44 Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Pegaso Ingresso No. 2 Via Paracelso 23, 20041 Agrate Brianza (MI) Italy Tel: 39 39 689 9939 Fax: 39 39 689 9883 JAPAN

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shin Yokohama Kohoku-Ku, Yokohama Kanagawa 222 Japan Tel: 81 45 471 6166 Fax: 81 45 471 6122

1/05/96

All rights reserved. © 1996, Microchip Technology Incorporated, USA.

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use, or otherwise. Use of Microchip's products as critical components in medical devices is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.